大数据分析的新时代宠儿能否不辱使命
提起“零编码”运动,相信很多人都很陌生,对于生活在大数据时代下的人们,必须要了解“零编码”运动,“零编码”运动由比尔·盖茨发起,史蒂芬·乔布斯对其进行了完善。这项运动正逐渐延伸到资本市场。
1979年,在乔布斯参观帕洛阿尔托研究所中,当他看到了命令行界面的指向-点击更换的第一个原型时,便萌生了进入用户友好界面时代的想法:“他们给我展示的第一样品便把我深深地吸引住了,它就是图形式用户界面……仅仅十分钟,我便意识到,在将来,所有的电脑都会以这种方式来工作。”
我们已经习惯于用指尖将含有上百万数据点的虚拟图进行放大查看,用系统把相关信息用阶段和层次来展现,正如我们敲击电话号码、图片、地址及全球定位系统(GPS)那样。在用声音调控、实时计算数十个替代性交通路线的同时,再使用实时卫星数据来监控数百万车辆运行情况如何?这只是硅谷(Silicon Valley)工程师研发的课题。
相比之下,处理金融数据则只有两种选择,要么就采用普通的计算方法,但受限太多,否则便使用专业工具,让受过专门训练的人来操作。
电子数据表并非程序语言。它们在建立金融大数据模型并用于运算时,无需处理速度。这让人们走向数据分析时代,造就了大量的数据科学家,他们用复杂的程序语言来建立数据模型。但这种方法并非万灵药:数据分析师可谓凤毛麟角,因此雇佣成本极高,他们通常需要数天时间才能提交一份死板的个人报告,而且这些报告通常未相互整合。花大量时间来整合数据,并使之标准化是一项枯燥的工作,就人才利用而言,这显然不是一个明智的选择。
更重要的是,它还会导致依赖性的产生。在全球金融公司中,众多的专业人士在进行风险管理、获取高额利润及建构复杂模型时不得不依赖少数的程序员和数据分析师。在金融和投资领域中,人才被分为两类,一种是能够编程的人,另一种则不能。
然而,即使华尔街的资本家也不得不接受这种酬金及收费结构的安排,意味着他们自己不能独立地计算金融数据,这种依赖性发展是不可持续的。
计算金融学应该人人都可参与其中,非程序员也能掌握高端计算能力,正如像苹果(Apple)和谷歌(Google)这样领先的消费者科技公司将军事导航系统转化为民用的那样,非技术人员用指尖和声控便可实现导航。
Adobe公司是PDF格式文件及Photoshop的发明者,它最近推出了一款名叫Muse的产品,企业借助它可实现“零编码”设计和发行专业网站。当然,如果科技发展到这种程度——非程序员也可使用图形式用户界面(GUIs)来创建企业级的互动性网站时,“研究周期将由天缩短至分钟”金融专家离无需编码即可设计大数据复杂问题的日子也就不远了。
许多在新一代金融科技岗位上工作的人们都相信,我们正进入零编码运动终将到达金融计算领域的时代。
可喜的是,研发图形式用户界面的工作正有条不紊地进行,与此同时,以云为基础、大规模平行计算的技术也在开发中,在它们的帮助下,华尔街的非程序员对大数据可实现近乎实时的复杂计算,同时,还可以对结果进行直观理解和描述。
如此一来,随着数据分析师和程序员的工作对外开放,每个金融专家都可接触到这一“秘密”。他们可以不用编码,不用依赖他人或机构便可以设计和测试量性金融研究和投资策略。
研究周期将由天缩短至分钟。大量的异质信息可以与市场数据进行整合,人们对其几乎可以实时进行直觉分析。这意味着,之前用于数据分析表操控投入的数百万小时及高价人力资本都可以得到节约,目前为这些任务所困的专家也得以解放,以便投入到解决更重要的问题中,并找到所需答案,这一切用声音、指尖和眼睛就可以完成。
作为大数据分析的新宠儿,“零编码”能否不辱使命,履行时代赋予的责任和义务,是人们关注的焦点。从目前来看, “零编码”运动一旦触及资本市场时,将引发革命性的变化。新型零编码平台将孕育可接入性和英才管理,与之相伴的是,人们将能更好更快地做出抉择,在冒险时信息也更加充足。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13