趣味数据挖掘 |“被打”和“北大” 的关联
小时候喜欢读趣味数理化,所以久有一个小心愿,写一组趣味数据挖掘的科普博文。 要把数据挖掘的一些概念讲得通俗有趣,需要好的例子,正搜寻中,一个有趣的、适合解释关联规则的例子就冒出来了。
科学网上三位博主周涛、吕喆、程智在博文中对“狼爸打子成才,把三个子女送进了北大”的事情做了定性分析。
本文借此例来说明数据挖掘中关联规则中支持度、置信度和兴趣度概念,顺便对此事做个定量分析, 同时也作为趣味数据挖掘系列博文的开篇。
这个关联规则可写成下列形式:
●R1: 被打 –> 北大, 支持度 s=?, 置信度 c=?
或反过来
●R2: 北大 –> 被打, 支持度 s=?, 置信度 c=? (观察因果的角度与R1有所不同)
下面将其计算支持度、置信度的上限,为简单,采用了一些略有放大的粗略假定和估计。
全国每年高考人数大约1000万人(2008 :1050万,2009:1020万,2010: 957万);把“狼爸”的三个孩子算成同一年进北大(支持度放大三倍),假定同年进北大、且都有“被打”的经历有3K名(支持度大约放大3K倍)。于是,全国考生中 “被打”且 “进北大” 的支持度s 为:支持度 s = 3K/107 =3K*10-7
狼爸的故事表明,这里k≥1, 据常识估计K<10 ( 如果轻率放大K,北大学生会提出抗议,幸好,这里只是反面的假定 ),于是:支持度 s < 3*10-6 (支持度没有因果方向, 对R1和R2都适用)
对这样的概率比较小的事件,成熟彩民也会只当做娱乐,实在不值得媒体大惊小怪。
2.1 在北京大学内计算
规则R1“被打–> 北大” 的置信度计算稍有点难, 留到2.2小节解析。
我们先计算 R2:“北大–>被打”的置信度,它也同样能说明某种关联,北大本科生 14000人(大约),平均每年收学生3500人,设其中挨过家长打的有3K人(1≤k<10),没有挨打的不少于3470人,则:
●北大–>被打, 置信度为 3K/3500 < 0.86%
●北大–>不被打, 置信度为 3470/3500 > 99.14%
可见,“被打”和“北大”的关联 很小,不足为信,当不得真。
2.2 计算“被打–>北大”的置信度 (confidence)
如上面假设,假定 同年全国被打的N名,其中进入北大的3K名(如上估计,0≤k<10)则
R1: 被打–>北大, 置信度 = 3k/N ,
●如果N很大,k>0,置信度就比较小(不敢轻易估计N的具体数值,但不希望N大,那是教育的悲剧),
●如果N不太大,K>0,置信度就比较大。
●如果某年,k=0,不管N是多大,那一年“被打–>北大”的置信度 为0.
2.3 在该家庭范围内计算,兼议规则的兴趣度:
“狼爸”有四个孩子(不知为什么能够超生),估计四个都挨过打,三个上了北大
被打–> 北大, 支持度 0.75, 置信度 0.75。 (1)
这条规则一旦走出其家门, 就不成立了。所以,准确表达为:
(该家,被打) –> 北大, 支持度 0.75, 置信度 0.75。 (2)
为了说明其无意义,我们还可以挖掘出一条千真万确的关联规则:
(该家子女,每天吃饭) –> 北大, 支持度 0.75, 置信度 0.75。 (3)
如果把“每天吃饭”改为任意的保健品,关联规则也成立,比“打”更具有有诱惑力,说不定还有经济效益。这条无意义的关联规则,说明需引入关联规则的兴趣度,此概念稍复杂,只简介其大致思想。
当关联规则左边是多个项,如上面的(3)式,可以用减项法测试每个项的贡献,这类似过敏疾病患者判断过敏源,左边甚至可以减少到空集。在(3)式中,
(a)把“每天吃饭”去掉, 不减少支持度和置信度,说明此项冗余;
(b)如把“该家子女”去掉,则相当于在全国的大数据集上挖掘, 支持度和置信度立刻大减,说明这个项是至关重要的。
如果一个关联规则中,每一个项都是重要的,这个关联规则基本上是有意义的。
这里有几个估计,(1) 所谓的“打”,实际上是高高举起,轻轻放下,是严格的指代词,还不是那种打得皮开肉绽的打(那样会打掉尊严和信心,就悲剧了);(2)老大比较懂事;(3)老大对老二老三的影响远胜于老爸打的效果。“狼爸”在挖掘关联规则时候,忽略了这一因素,“父假长子(女)之威”,用数据挖掘的行话,犯了“No interesteness” 的错误(这是一个稍复杂的概念),得出了错误的挖掘结论。
在输入文本的纠错技术中,常关注词与词的发声关联,或谐音关联,“被打”和“北大”的普通话发音都是“beida”,用拼音输入法时候,二者容易混淆,又例如,本博文在输入最后一节小标题“辨才需待七年期”时,曾把 “辨才”输入为“辩才“(谢谢22楼的朋友的指正),纠错软件会把近音词按近似度排序列出。因为在语音近似的意义上:
被打–> 北大,支持度 100%, 置信度 100%
于是,在用拼音方法输入“被打”之后,作输入纠错检查时,软件列出候选词中的Top 1 就是“北大”,或许可以作为中学生被打后的一种安慰。
这一技术在处理网络文本,微博挖掘时也很有用,如规范 “悲剧 Vs 杯具”,“p2p Vs. P-to-P”,”U Vs. YOU“,以及许多网络同声缩略语等等。
过去讲关联规则时候,常常用啤酒尿布的故事,有三个要点:
(a)表象分析:说,沃尔玛通过抽象的销售数据挖掘,发现啤酒和尿布常被男性顾客们同时购买,在挖掘出来的若干条形如 ( Xi–>Yi ,s=? c=? ) 的规则中,这一条支持度和置信度都比较高;
(b)内在联系 (这不属于数据挖掘,而属于管理)调查发现,婴儿之父下班为孩子买尿布时顺手买回自己爱喝的啤酒;
(c )促销措施 (属于促销手段),把啤酒和尿布放在同一个货架 ,或进一步地,把啤酒降价,把尿布涨价,吸引婴儿之父的消费。
现在人们认为,这只是一个故事,或许,“狼爸”的例子更贴近,更容易消除对概念的误解。
在人们没有掌握行星运动规律之前,人们从历史观测数据去找规律,找匹配。第谷是一位实验天文学家,历经40年观察,积累了关于行星运动的大量数据。
开普勒在第谷的四十年数据上,用手工作数据挖掘,挖掘了十年,发现了行星运动三大定律。 Candida Ferreira采用基因表达式编程(GEP)方法,用10个 个体, 进化50代,只需要少得多的数据,几秒钟就可完成(参见文献[1],P253-257 )。有了这个定律,如今计算某个行星的位置,就不再需要数据挖掘,而直接用公式了。所以数据挖掘是在不知道规律时,而要猜自然之谜时的无奈之举。
如今,未破解的自然之谜还很多,数据挖掘虽属无奈之举,却很有效,挖掘出正确的表达形式(公式,定律等)后,再设法用理论或模型 来作动力学的或构造性的解释。
上面的分析表明,数据挖掘能从能从一些平常熟视无睹的事实中,挖掘出令人惊奇的结果。所以,有些国家把数据挖掘专业看作是敏感专业,出国学数据挖掘的学生去办留学签证时,常常被Check ,复查,偶尔也听说过被拒签。
“狼爸”的三个子女进了北大,还不能就说是成功了,今后还要作科研,找工作,也许还要读研,写论文…, 等待他们的竞争还多,要等将来工作上出成果了,才算成功。
有道是:试玉要烧三日满,辨才需待七年期。希望他们在七年或者十年之后能真正成才,那时的成才,与现在的“打”,实在是没有什么关联了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12