统计建模和机器学习的区别之我见
最近我多次被问到统计(尤其是统计建模)、机器学习和人工智能之间有何区别。其实这三者之间在目标、技术和算法方面有很多重叠的部分。引起困惑的原因不仅仅是因为这些重叠部分,也是因为我们被很多非科普文中的时髦词儿给迷惑了。
统计建模最基本的目标是回答一个问题:哪一种概率模型可以产生我所观察到的数据?因此你必须:
• 从一个合理的模型群里挑出候选模型
• 预估未知变量(参数,Aka拟合模型到数据中)
• 比较拟合模型与其他备选模型
举个例子,如果你的数据需要计算,例如流失客户数或者细胞分裂数,那么泊松模型(Poisson)、负二项模型或者零膨胀模型(zero-inflated model)都可能适用。
一旦某统计模型被选定,那预估模型将用于测试假设、创建预测值以及置信测量。预估模型将成为我们解析数据的透镜。我们从未宣称选定模型就能产生数据,但是我们能观察它基于某验证推理在随机过程所获取的合理近似值。
验证推理是统计建模的一个重要部分。举例而言,要决策到底是哪一种或者哪三种医疗设备可以让病患获得最好的治疗,你也许会感兴趣使用一个模型,该模型能捕获某种数据机制来判断该病患在接受不同治疗所获得的不同结果。如果某个模型可以很好地捕获数据产生机制,那么其也可以在那些被观察数据区间内做出很好的预测,甚至可能预测出新的观察结果。
经典机器学习
经典机器学习是一种数据驱动型技术,受模式识别启动,专注于回归算法和分类算法。其潜在的随机机制通常并没有作为最首要一项关注点。当然很多机器学习技术也能通过随机模型和回归计算来定义,但是数据并不被认为是由其模型直接生成的。因此,最重要的关注点是识别到底是执行哪项特定任务的算法还是技术鉴定(或者集成方法):也就是说客户到底最好被分段于K(数据集群或聚类),还是DBSCAN,或者是决策树,或者是随机森林,又或者是SVM?
简而言之,对统计人员来说模型是第一位的,对机器学习者而言,数据是第一位的。因为机器学习的终点是数据,而不是模型。将数据分离出来去做训练集和测试集的验证技术(鉴定方法)是很重要的。一个解决方案的质量高低并不仅仅依赖p-值,而是需要证明这个解决方案在以前不可见数据中是否表现良好。将一个统计模型拟合到一个数据集,或者将一个决策树训练成一个数据集,将会需要融合一些未知值的预估值。该决策树的最佳分割点取决于从属变量的条件分布参数的预估值。
对我而言,没有什么技术被证明可以自我学习。训练才是成型某种学习的必要过程,换句话说,这意味着要获取一项新的技能技术,训练就是学习的一部分。训练深度神经网络取决于输入数据的权重和偏差,如果它学习分类,而该网络就变形成为一个分类器。
现代机器学习
机器学习系统如果不是编程去执行一个任务,而是编程去学习执行一项任务,那么这就是一个真正的学习系统,我把这叫做现代机器学习。就像经典机器学习的变体,这也是一个数据驱动型的实践。但不一样的地方是,现代机器学习不仅仅是依赖于丰富的算法技术,几乎所有的这类机器学习的应用都基于深度神经网络技术。
这个领域我们现在倾向于称它为深度学习,一种机器学习的细分,经常应用于人工智能,也就是说让机器去执行人类的任务。
数据扮演什么角色?
现在我们可以通过数据所承担的角色来区分统计建模、经典机器学习和现代机器学习。
在统计建模里面,数据引导我们去选择随机模型,来形成对不同问题概率的抽象表达,例如假设、预测和预报。
在经典机器学习里,数据驱动的是对分析技术的选择,如何最佳地执行即将任务,这是数据训练算法。
在现代机器学习里,数据驱动基于神经网络算法的系统,去学习具体任务,系统可以自动判定数据常量规则。在训练神经网络数据的过程中,系统逐渐学习到执行任务,就像某人所说:“是数据在做编程。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24