互联网大金融数据要怎么做
互联网金融几乎每天都在更新,每过一段时间都需要去分析、共享一下,从而挖掘里面的价值,到现在为止,中国在这方面相对比较落后,有待改进。
在互联网金融平台,大数据是最重要的一个资产,主要包括数据集成、数据分析、数据共享着三点,但互联网金融平台的大数据有它自己的特别属性。
核心指标是人、货、场
大数据在英文里叫Big Data,何为Big?这个Big不仅仅指数量庞大,还指类型繁多、处理速度快以及价值可挖掘潜力大,这四个纬度共同构成了数据之“大”。不管从哪方面入手,都首先要求集成大量数据,在数据量大且类型多样的基础上才可进行第二步的分析与研究。
在互联网金融行业,对一个网贷平台来说,需要集成的数据很多,总体可分为人、货、场。
“人”方面的指标,包括新用户与老用户数量、活跃用户、沉默用户、睡眠用户,提现金额、充值金额、成交金额、还款金额、待收金额,新用户首充、首投成本,留存率,以及来自PC端、APP端、微信端不同渠道的各类指标等,这是与“人”相关的各类数据,价值可挖掘潜力巨大,且多是核心指标。
“货”方面的指标,包括发标数量、种类、融资额、标期、利率、融资速度等,“标期”与“利率”是投资者关注的重点,“融资速度”则是平台必须紧盯的要素。
“场”方面的指标,包括平台网站及移动端的浏览次数(PV)、独立访客(UV)、访问时长、跳出率等,这些指标对监测网站流量与用户行为具有重要价值。
可以说,大数据应用的基础是大量数据的集成与汇聚,这要求必须有强大而稳定的系统加以抓取和存储,只有覆盖面足够广、类型足够多且数量足够大时,下一步的分析与研究才能得以实现。
让数据成为侦察兵
众所周知,上个世纪90年代沃尔玛有一个大数据案例---“啤酒与尿布”,而在目前互联网金融行业中,互联网端与资产端的大数据应用均受到各平台的高度关注,不过,从目前的整体情况来看,互联网端的应用和落地速度更快一些,为互联网端的运营提供决策支持成为其重要的应用范畴。
举几个例子,比如,根据获取的上月份的新增用户数、成交金额、待收金额等核心指标,预测下一月份各项指标的表现,若实际业绩未达预期,则可进一步通过数据从各个侧面分析原因。譬如,从PC端、APP端、微信端等渠道层面分析,前后两月新用户、老用户活跃频率与投资额变化,可甄别出何种渠道何种用户投资额出现了环比下降,这将为下一步渠道层面的营销推广策略提供重要的数据参考基础和价值。
本人之前曾撰文强调过移动金融战略的重要性,这一战略的制定与实施也离不开数据的支撑与分析。我们从系统抓取的PC、APP、微信三大渠道的分析注册来源数据中分析发现,PC端仍是注册和引流的主要阵地,占比最大,其次是APP端,微信端占比仍较小;在投资金额上,APP端显示出强劲的发展势头,在投资占比上已经超越了PC端,占比超过65%。从数据的挖掘与分析中,可显著看出移动端的发展趋势,这也为平台制定移动金融战略提供了扎实和可靠的数据支撑,从这一层面上讲,大数据可谓互联网金融平台的核心资产,愈发显示出其战略地位。
以上是平台运营与战略层面的大数据应用,在具体的产品运营上,许多指标也可发挥其“侦察兵”的作用。其中,“融资速度”便是一个十分关键的指标,它高度反映了投资者在安全性、利率与期限等各要素的综合考量后做出的决定,融资速度越快显示用户越青睐该产品。譬如,最开始我们推出某款新产品时,融资速度仅为400元/分钟左右,速度与人气未达预期,在此数据分析的基础上,决策层采用了相应措施改善用户体验、提升产品吸引力,这一指标在一周后便飙升至13000元/分钟左右。这是大数据技术为产品决策提供支持的重要应用。
数据分析咨询请扫描二维码
在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28