
SPSS分析技术:裁判(打分者)的信度分析
奥运会的很多比赛项目都是通过裁判的打分来决定名次的归属,例如,跳水,花样游泳,体操等项目。为了比赛的公平,奥运会的组委会会以合适的比例选择来自不同地区和国家的裁判组成裁判小组,避免裁判有意识或无意识的倾向于来自于同一地区或国家的运动员。除了这样人为安排以外,有没有数据分析技术从数据的角度对裁判的打分进行监督和评价,从而保证比赛公平呢?其实是有的,这就是评分者的信度分析。
评分者信度分析
评分者信度分析是指多个评分者对同一批受考核者进行评分时的一致性程度。在日常工作中,政治教师阅卷,评委打分之类的难免受到主观因素影响,如何评判他们的评分是否公正合理,这就需要用到评分者信度分析。
评分者信度考察采用相关分析。如果评分者是两人,可以采用Pearson或Spearman等级相关;如果评分者是三人及以上,并且采用等级评分方式,可以采用Kendall协同系数来分析。Kendall协同系数的公式为:
协同系数W表示变量之间的协同程度,取值在0~1之间,W越接近于1,表示变量之间的差异性越大,说明裁判的打分差异显著。SPSS将自动计算W,并给出对应的相伴概率值,如果相伴概率值小于或等于显著性水平α,则拒绝零假设,认为裁判打分越不一致,反之,则认为打分标准一致。
范例分析
现在有一份某届奥运会8位裁判对200名运动员的打分数据资料。根据这些数据分析这8位裁判的打分标准是否公平。
(例题数据文件已经上传到QQ群中,需要的朋友可以前往下载)
分析步骤
选择菜单【分析】-【非参数检验】-【旧对话框】-【K个相关样本】,在打开的对话框中按照下图输入信息;在检验类型中,选择Kendall W,点击【确定】。
结果解读
左边的等级表格展示8位裁判在对200名运动员进行打分时,每位裁判的打分分数在所有裁判中的平均排名,可以发现8位裁判分成三类,A裁判和H裁判打分比较一致,给分比较客观;B裁判、D裁判和F裁判的打分一致性高,分数给得较低;剩下的C裁判、E裁判和G裁判结为一类,给的分数较高。右侧的检验统计表格显示了W系数为0.580,说明裁判之间的打分差异性比较大,这个结论也可以从显著性水平为0.000得出。
我们可以将B裁判、D裁判和F裁判的打分数据再进行一次K关联样本的非参数检验,得出的结果如下图所示:
从这个结果可以印证我们上面的结论,从等级表格可以知道,三位裁判打分的平均排名是差不多的。Kendall W系数为0.000,说明三位裁判的打分差异很小,显著性水平为0.000,也说明了三位裁判的打分差异性很小,一致性很高。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08