一个大数据应用是如何炼成的
经历了多年的BI专题应用建设,有幸能在一个传统企业里探索大数据应用的建设过程,发现了很多不一样的地方,获得了不同的感受,在此以一个真实的案例的建设过程来品味其中的不同,也许能获得一些启示。
课题是怎么来的?
大数据应用最大的挑战,就是未来的不确定性,因此,传统公司动辄提前半年进行投资预算规划的方式是不太适合大数据的。
做大数据几年,虽然说现在靠谱的大数据的商业模式也就在广告、金融、公益等方面,但真要下决心干某个大数据应用项目,其突发性、偶然性也非常强,因为对于大数据这个不成熟事物,无论是哪类公司,观望占了很大部分,对大数据的质疑有之,对于大数据安全的惶恐有之,对于合作模式的疑惑有之,更多的是不停的提出想法,不停的被否定。
企业顺应大势成立了大数据团队,最痛苦的是不知道干什么,什么能干,什么不能干,也没啥可借鉴的经验,这跟当前创业公司也类似吧,不知道哪种模式是靠谱的。
大数据几乎无所不能,但真要做起来,其实当前是能者寥寥,虽然趋势不可挡,但这一波搞大数据应用的,似乎大多要死在黎明前,一个概念从提出到最终普世大众,的确路慢慢儿修远兮。
今天要聊的,是个公益课题,电话反欺诈,课题有一定的偶然性,安全部门提到了,问我们能不能做做看,感觉社会意义很大,比如腾讯有反欺诈盒子,360有拦截系统,本来某公司希望来做这个课题,但综合各方面因素,还是决定自己做。
作出这个决策的实际一天不到,所以决定自己做,基于以下几个因素:
一是这个大数据应用是有显著效益的。
二是很好评估,不像很多BI应用产出无法评估,备受质疑。
三是公司大数据平台建立了,提供了基础条件。
四是自主建模团队建立了一年多了,不需要太依赖合作伙伴,因此也无需走那套冗长的招标流程,失败的代价也会小。
团队如何组建?
跟传统的安排不同,抛出这个课题后,主动接受这个挑战的,却是一名从一线刚过来的同事,面对不确定性,想来大多数有资历的员工也会犹豫老半天吧,这个也有一定偶然性。
谷歌讲到了招聘人才,提到了无论多大代价也要找到创意精英,而做大数据,更加需要,需要主动型的创意精英,如果传统企业每个人仍然像传统那样局限在自己一亩三分地,很难有创新突破。
很幸运,我们有一只黑天鹅。
这种自愿组队模式的确有很大的好处,不按计划分配,尊重个人的意愿,更能激发人的主动性,团队组建也非常快,当天组队,第二天就开干,不存在类似项目的繁琐流程。
虽然团队成立有一定的偶然性,但的确与与企业近年来在大数据组织创新、人才引进和人员流动上的努力分不开。
假如没有大数据组织的成立,谁牵头都是个问题;假如不扔掉传统的包袱,很难有人专心做这个;假如没有企业内的人才流动和外部人才的引入,我们也干不了这个事。
平台资源如何解决?
在那个传统BI小型机时代,要做一个项目,抛开硬件资源环境的投资立项过程不说,光是一个新项目的集成估计也不止一个月。
而这个项目不同之处是:
一是基于大数据平台的租户能力,资源申请所见即所得,加上流程,一周内全部搞定。
二是提供的组件较为丰富,特别是流处理资源的快速提供,为反欺诈的实时性提供了坚实的基础,换在几年前基本不可能。
三是公司技术团队的保障,使得大多技术问题得以尽快解决,这也有赖于公司在大数据平台上的末雨绸缪。
某人说过,凡是能用钱解决的问题都不是问题,但技术这个东西,虽然用钱的确可能解决,但对于大多数公司,钱都是个大问题,因此技术问题的解决又是何其艰难。
比如我们碰到Kafka的一些问题,长期难解决,大多企业的机制流程恐怕也不允许随便开价100万招个技术专家来解决吧,传统企业的自我技术进步是部血泪史,外面的专家开价开不起,自己的专家起来了,又怕被人家挖。
项目开发历程
敏捷开发现在提得很多了,但感觉以前BI的建设就是最大的敏捷,最极致的情况,一个人搞定需求、开发、上线和维护,当然,现在软件工程的确还是要靠分工协作,需要一套方法论来解决显性迭代和维护配合的问题。
大数据创新太特殊了,没必要循规蹈矩,抛开全部的束缚,一切要为速度让步。原因是失败可能性很大,速度越快成本越低,同时既然对于公司原有业务没有影响,因此可以放手去干,什么文档都可以不要,什么既定流程都可以不遵守,反正光脚不怕穿鞋的。
因此,这个课题做的非常快。
第10天,做出一个反欺诈简单模型,包括了案例分析、数据准备、数据建模及验证等,我们的观点是第一个版本可以粗糙一点,希望尽快验证这个事情的可行性,否则一切都是徒劳,因此就是讨论和验证数据。
当时规定两个礼拜如果出不了结果,就会放弃,这类应用失败可能性很高,但船小好调头,以后做一些创新,都建议给创新做个时间止损点。
第25天,生产完成部署,也就是具备系统支撑能力,除了系统部署方案需要专业部门把关,其他基本是能省就省,当时的想法是,这类创新项目最好一个月就能搞上线,起码能测试吧,相对以前BI应用项目动辄半年甚至1年的节奏,的确大不同。
创新,速度始终是王道,因此日报变成刚需,也回忆起了某位离职运营商去创业的一个领导,他说每天凌晨就要看昨天的日报,以便安排当天的工作,我们可能做不到这么疯狂,但日报的节奏是对的。
第30天,一直在外呼现场进行验证迭代,直到36天,获得认可为止,以后就是持续调优,但这个数据已经可以投入生产了。一般电话诈骗很难在事中干预,但这个模型做到了,准确度达到90%以上,通过实时事中干预挽回收入损失超千万。
这个应用就是中国移动的天盾大数据反欺诈系统,它就是这么诞生的,没有什么大汇报,没有什么流程,就是很轻很轻的来了。
现在算法还有很多问题,反欺诈矛与盾的争夺是很艰辛的,面上的风光底下是每天建模师的艰苦卓绝的努力,上了很多新算法,很多很多失败,拉低了成功率,对于这个大家是异常焦虑的,群里总是不停的讨论,大家都知道这个是核心竞争力,路还很长,还需要坚持。
这个应用还难言成功,只是传统企业在大数据应用上的一次不同的尝试,但不管怎样,互联网快速迭代的那套的确是给了很大的启示,自己做了,才知道原来的差距是如此巨大,自己的能力是如此脆弱。
从课题的角度讲,要认识到大数据这个事物的不确定性,选择它具有偶然性,没有规划能预料到这个,当前大数据变现商业模式也并不成熟,不要奢望投资大数据马上有产出,也许能力储备是第一位的。
从组织的角度讲,大数据人才属于稀缺人才,要么打破原有框架,不拘一格外部找人才,要么充分企业内挖潜,让人员能流动起来。流动的人才有一个特点,即至少有一颗骚动的心,主动性对于做成功一件事极为重要。
从能力的角度讲,假如要向大数据转型,则还是要对“没有一个大数据公司,能依靠合作伙伴获得成功”这句话有所敬畏,大数据的核心能力要掌握在自己手里。
从平台的角度讲,如果没有大数据平台的建立,这个项目能够有效果也许是半年以后的事情,但机会稍纵即逝,没人会等你这么久,因此此类基础设施建设不能犹豫,“书到用时方恨少”。
从开发的角度讲,先设定一个小目标,搞他个十万八万的,只要有点看得见的产出就行啊,快速迭代,始终是王道,失败了也没什么大不了,我们缺的就是经验,多头并行也不是不可以,只要有足够的创意精英。
当然说易行难,以上几点对于大多数公司来说是如此不易,也不能以一个应用的成功与否说明任何问题,大数据要成功,就像黑天鹅,有一定偶然性,但如果连准备的勇气都没有,没有一点实质改革的动作,就没有任何成功的可能了。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16