你不需要大数据,你需要的是正确的数据
你需要的并不是大数据,而是正确的数据。以Uber为例,Uber每天都能收集到海量数据,但Uber会分析全部数据吗?不会,它只用那些能让产品更快连接乘客和司机的关键数据。
问三个问题去挖掘你做决策所需要的正确数据:
哪些地方在浪费资源(时间、金钱、人力、原料等)?
如何自动化地减少浪费?
针对1与2,需要哪些数据?
以下是全文:
大数据这个词已经无处不在。无论是大企业、小企业、传统行业、新兴行业,每一家公司都加入了大数据的浪潮,好像有了大数据就能解决所有问题。
企业通过社会、天气、政府数据来预测供应链中断。大量的用户数据被各个网站收集利用,一些公司甚至开始利用大量的文本交流数据建立算法,从而与客户进行对话。
但现实的情况是,我们对大数据重要性的痴迷,往往会产生误导。是的,在一些情况下,从数据中能获取有价值的东西,但对于创新者来说,数据量和规模不是关键的因素,找到正确的数据才是关键。
关键不在于数据的大小
在谈到大数据作用的时候,我们总是拿Uber来举例,他们好像是用大数据获得成功的最典型的例子。毫无疑问,Uber从数据中获得了财富。依靠他们的应用,Uber从司机和乘客那里获得了实时的数据,让他们能够知道何时、何处人们对车辆有着较高的需求。
但Uber的成果并不是依靠他们所采集的大量数据,这些大数据使公司能够进入新的市场,但Uber的成功来自非常不同的东西,小的、但是正确的数据:车辆调度数据。
在Uber诞生之前,我们打的是传统的出租车。虽然传统出租车看上去与互联网没有什么关系,但是其实它们才是一种依靠大数据的东西。原因是,传统出租车依赖的是“人眼网络”:无数人站在城市中的某一个点,在看到出租车后马上招手。虽然貌似与信息科技无关,但是实际上人们在打车的过程中,同样使用了计算,人脑的计算:我们在大脑中收集并且分析数据。
Uber提出了一个更优雅的解决方案,人们不再需要自己跑到街上去用眼睛收集数据,不用再用大脑去处理数据,而是让Uber为我们提供正确的数据来完成打车任务。城市中谁需要打车?他在哪里?离他最近的车在哪里?需要多长时间能接到乘客?正是凭借这些正确的数据,Uber和滴滴才得以成功的在出租车行业内掀起了革命。
Uber的优雅解决方案是停止运行可视化数据-生物的异常检测算法,只需要正确的数据来完成工作。城市里的人需要搭车,他们在哪里?这些关键信息让Uber、Lyft、滴滴出行彻底改变了一个行业。
用正确的数据完成工作
有时候正确的数据规模也很大,也有的时候正确的数据规模很小。对于创新者,关键在于哪些关键的数据对企业最有帮助,要找到正确的数据,我建议你思考下面三个问题。
问题1:是什么在浪费公司的资源?
大部分汽油都在日常运营中浪费大量的资源。拿鲜花零售业来举个例子,大多数花店中50%的库存最终都会被浪费掉。正因如此,才产生了UrbanStems和Bouqs这样的鲜花配送服务,它们通过正确的数据帮助花店减少浪费。
“哪里有浪费,哪里就有机会”。无论你是工业生产、零售还是法务调查公司,搞清楚哪些因素会浪费你的资源,都能够帮你找到正确的数据。
问题2:如何通过自动化来减少浪费?
在确定哪些因素会造成资源浪费之后,下一步就是要减少浪费。人类擅长于做某些类型的决定,比如在品牌营销方面,这部分应该交给人类解决。
但是当涉及到做简单的重复性经营决定的时候(比如把出租车派到每个地方,如何给产品定价,向花店订多少鲜花),机器比人更擅长。虽然有许多传统的人类做决定的商业模式是可预测的,现在我们能分辨更多的数据,来进行自动化。
例如,有传言称亚马逊正打算取消所有的人工定价团队,让算法来给大部分商品进行定价。在零售商眼里,这是完全不可思议的行为。但是如果亚马逊的算法能够胜任定价工作,它将为亚马逊减少成本、库存,以及推出更好的可预测的新产品介绍,这一切将会产生巨大的竞争优势。
问题3:你需要哪些数据来完成这一切?
只要你理解了传统系统当中的浪费,并且知道了浪费造成的后果,最后一步是去问一个简单的问题。如果你可以有任何数据来帮助你做出完美的决定,它会是什么?
在Uber这个例子里,为了完成自动化指派司机工作,从而减少资源的闲置,他们需要知道潜在的乘客可能在城市的哪些位置。另一个例子是通用电气旗下的产业互联网软件Predix,公司在机器发生故障前提前知道,以减少维护工作的成本,以及减少停机时间的浪费。对于寻求降低成本的保险公司,他们想知道一个糖尿病患者血糖下降的时候,以帮助自动化进行围绕病人的干预措施,减少不善疾病的影响。
这就是你所需要的数据,通过处理大量的信息找到他们是很好的,如果你通过建立一个新的应用程序来捕获它们更好。
大部分公司花了太多的时间提倡大数据,但是却几乎没有花时间去想清楚哪些数据才是正确的有价值的数据。
数据分析咨询请扫描二维码
在当今数字化时代,数据已成为推动经济和技术发展的关键因素。企业和机构对数据科学与大数据专业人才的需求急剧增长。该领域涵盖 ...
2024-11-16金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13