专家给大数据“泼冷水 ”:中国大数据仍在初级阶段
大数据成为时代的新宠儿,不知情的人以为,中国大数据已经发展的差不多了,在专家眼里,大数据还处在初级阶段,出现的许多问题都亟待解决,大数据还要再迈过几道坎儿。“我国意识到大数据的价值,并不比欧美晚,但并没有很好的大数据应用。”大数据运用还在法外“裸奔”,这都是大数据要...
“不少人以为,大数据技术很成熟了,甚至说大数据是万能的。”近日,在“中关村大数据日”上,西安交通大学数学与统计学教授徐宗本院士说,“大数据具有大价值,但也有大忽悠的一面。”在接受记者专访时,数据堂合伙人柴银辉认为,“大数据就像5年前的云,还处于初级阶段,还需要跨过几道坎。在这个过程中,要谨防泡沫出现”。
数据无差别存储:想要应用成本要降万倍左右
“数据无差别存储,使用起来成本太高。”柴银辉估计,“这些数据想要应用,成本要降到万倍左右。”
目前,很多人把“大数据”等同于“数据大”。在柴银辉看来,“分类存储的数据才能产生价值”。
对大数据拥有者进行分析,柴银辉认为,前景并不乐观。“大家说政府掌握数据,但很多部门只是把文件堆在那里,甚至没有数据库。国企有数据,却不知该怎么存放。无差别存储的数据,很难产生价值。”
柴银辉认为,大数据想要应用,就要经历全、新、细、准四个阶段,但目前很多数据还没完成第一个阶段。
“我国意识到大数据的价值,并不比欧美晚,但并没有很好的大数据应用。”电子科技大学教授周涛曾经分析,其中一个重要原因,是拥有大数据的人、拥有大数据分析技术的人、拥有数据分析需求的人是分离的。
他举例说明,比如遥感、水利、水文数据,如果国家不能有效管理起来,就没法产生价值,反而是一个巨大的负担。
技术上并不成熟:新分析方法还没出现
“不少人觉得,大数据技术很成熟了。”徐宗本说,这其实是一个误区。
徐宗本从处理和分析的区别入手加以说明:“我们想做一个简单统计,做一个查询,做一个排序,做一个比对,等等,这叫数据处理。它是用计算机的标准逻辑一步过的处理方式。而数据中有没有趋势、有没有共性结构、有没有关联数据,这些叫数据分析。”
为了更便于理解,徐宗本举了一个例子:“在这间屋子里,找出谁个子最高,这是处理,但找谁和谁关系最好,这叫分析。”
但在现实社会里,很多人把两者混为一谈。这也造成了他们对大数据技术的误读。徐宗本认为,大数据的成功是部分处理技术的成功。现有例子对于分析而言,基本还是传统方法,新方法并没有出现。
硬蛋首席技术官李世鹏告诉记者:“我们在做智能硬件孵化时发现,对于供应商和创业者需求的精准分析,大数据还需要进一步成熟。”
“大数据不是低端业务的简单整合。”数据堂CEO齐红威说,“现在的大数据应用还非常浅,远没到分析阶段。”
人才瓶颈制约发展:基础性数据分析人才缺口达1400万
“全球竞争对手,几乎早于我们半年,把顶尖大学大数据研究室里的优秀专家挖光了。”滴滴出行CEO程维说,“目前,我国每年培养的大数据深度学习方面的博士生大概只有50个人。”
“大数据发展的瓶颈是人才。”程维说,大数据健康发展,必须培养出世界领先的团队。
据中国商业联合会数据分析专业委员会统计,我国未来基础性数据分析人才缺口将达1400万;而在BAT企业招聘职位里,60%以上都在找大数据人才。
“一个大数据方面的普通大学生,年薪起码也有五六万美金,吸引力不能说不强,但现在还是缺人。”数联铭品CEO曾途告诉记者,“大数据是一个新兴事物,高校、院所里培养的人才还不多。这种现象短时间内很难改变。”
“现在大数据有很多问题,首先就是人才缺乏。”北京大数据研究院学术委员会主任张平文提到了一个担忧,“高端人才都在公司里,年薪上千万,学校雇不起。这可能会对基础研究产生影响。”在他看来,解决这个问题,需要高校、院所机制体制的突破。
个人隐私亟待保护:大数据运用还在法外“裸奔”
“前两天,家人甲状腺不舒服,我在网上查了相关知识。过了一天,就有人说是甲状腺医生,想加我为微信好友。”张平文所说的,正是人们对于数据安全的担忧。
“数据具有特殊性。如果反映的是群体趋势,这对生活是有益的;如果触及个人隐私,就可能造成伤害。”柴银辉说。
“在美国,你去贷款,但哪一年在图书馆借书忘了还或推迟还,就可能受影响。美国诚信体系建设比较完善。同时,几十年来,相关立法可以让个人隐私得到很好的保护。”曾途说,“目前,我国大数据还处在起步阶段,尚未进行立法监管。”
“存在可观的利润空间,就可能出现泄密、买卖信息。”曾途认为,不让大数据运用在法外“裸奔”,“立法应当提上议程”。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21