大数据分析智能制造业
今年五月国务院正式印发了《中国制造2025》,部署全面推进实施制造强国战略,旨在通过重点推进创新驱动、智能转型、强化基础、绿色发展,推动中国从制造业大国跻身世界制造强国之列。
然而,不论是中国制造2025,还是所谓的工业4.0,概念阐述虽有所不同,但其本质趋于同归,制造业是中国经济不断增长的强心剂,“互联网+”的深入推进,同时与制造业深入融合,早就更加智能的制造,势必会引发一场全新的工业革命。
制造业大数据浪潮
正如麦肯锡所述“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。”对于制造业而言,数据一直被奉为生命之血。如果说制造业信息化的最初阶段是企业资源计划(ERP)、产品生命周期管理(PLM)等应用系统实施的话,那么接下来对数据的掌控将成为未来发展的重点。
对于中国的制造型企业来说,最初是从粗放式的管理向精细化转型;然而市场竞争非常严苛,制造业需要在这样的环境下不断优化生产工艺、加速业务流程,实现更加科学的决策分析。通过驾驭大数据无疑会让制造企业变得更智慧,在竞争日益激烈的市场中就会获得更高的竞争力。
新层次的大数据分析为制造业研究市场和趋势分析带来新的维度。这些数据被用于预测未来、规避风险、理解价值链并优化客户体验的重要工具,为制造业未来业务的增长指明方向。
此外,越来越多复杂查询的处理带来了各种不同的数据集,其中有可能包含来自企业资源计划(ERP)系统和客户关系管理(CRM)系统交易数据、社交媒介和地理空间数据,还有内部文档和其它格式信息等等。
现在企业存储的信息量即便不是PB级,起码也有TB量级。这些企业可能希望每天能分析几次关键数据,甚至是实现实时分析;而传统BI流程对历史数据进行分析的频率是以周或月为单位的。
摆脱制造业困境
实际上,企业如果要进行大数据分析实践,选择合适的技术是规划的第一部分,企业选择了数据库软件、分析工具以及相关的技术架构后,才可以进行下一步并开发一个真正成功的大数据平台。
数据收集仅仅是个开始,这些数据必须能够转化为实际的行动,从而指导企业运营。要实现这一点就必须注意数据的细节,正确理解数据的相关性。比如,企业所拥有的各种数据源需要与数据关联性和业务规则复杂度进行链接,以获得一个包含企业绩效、销售机会、客户行为、风险因素和其它业务指标的全面视图。由于对于数据分析的需要,历史数据的数量也需考虑在内。
如果企业需要五年的数据,而一个数据源只包含两年的信息,那么该怎么办呢?这些因素并不能从根本上影响需求的规划,但是它们可以帮助企业部署大数据分析系统、选择最为合适的技术。
对于垂直市场而言,现成的分析应用程序都是专门为其定制的,当公司管理人员和业务经理需要查看大数据分析查询结果时,数据可视化工具可以简化其流程。
企业在在制定实施方案、对大数据分析解决方案进行选型之前,还需要考虑一些问题。智能化的大数据分析解决方案可为企业提供精准的趋势预测。一方面可以深刻理解市场需求和用户的痛点,从而做到真正的产品创新;另一方面对库存、物料、人员等资源进行更优化的计划和协调。
大数据正在以稳定的步伐渗透到各行各业,未来我们的生活中大数据的应用会越来越多,而对于制造业而言,需要化被动为主动,因为信息质量会变得更好,而且信息能够更高效的得到利用,从而充分享受到大数据分析所带来的红利。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20