公司正在大力投资于收购和开发人才,技术和业务流程,旨在手机和分析海量数据,是他们能够开发旨在加强客户价值可操作的商业洞察力。数字业务转型的主要驱动力是提高数据转化为知识和理解,导致有意义的和及时的行动能力。然而,企业需要什么要的数据和大数据科技为企业所带来的还是有一定差距的,这很大程度体现在它索贝存储到搜索和检索的基础架构层。为了能够突破简单的收集数据,为了一个漂亮的视觉故事,往往需要一个数据科学家的经验,来真正分析总结的数据,才可以被用来获取企业真正想要的数据见解。对于营销组织,数据科学家的聘用是最重要的。
但是数据科学家实际上做什么?最好询问首席锂技术数据科学家,迈克尔.吴博士。吴博士用了大量的时间在处理数字,测试和建筑模型,并试图了解在不同的社会渠道社会化客户的行为来预测客户行为及其对企业的影响。吴博士帮助我们了解企业如何使用原始数据转化为他们实际上要做出更好的决策信息的见解。如今,市场和销售组织正在努力征服海量数据。
5个步骤来获得原始数据可操作性的见解
1.首先要确定你正在试图解决的业务问题
由于作为处理所有这些数据的起点,吴博士建议企业开始业务问题。收集所有的数据是很重要的,因为你不知道在未来会出现什么问题,但是为了使用这些数据进行商务行为必须要展开一个问题。“如果你想要有一个大的数据主动权或者大数据战略,首先确定一些问题,这样使你手机的数据更有直接的价值,”吴博士说。在这一过程中,数据将有更多的价值和更长的保质期,这将在未来10年或20年后体现出更多增长的价值。
一旦你收集的数据用来解决特定的问题,那么你必须要看到数据是什么属性或什么信息还有你从这个数据得到的信息。每个人都想知道如何提高在社会化媒体的识别度并且吴博士说社会媒体或人参与的社交媒体消费中有大量的数据。营销者其实可以通过数据并做一些简单的类型分析,使他们能够最大限度地发挥他们的社交媒体的付出。
2.启动描述性分析
为了将原始数据信息转化为对数据信息的见解,吴博士说,有三个班的分析可供人们使用。第一类被称为描述分析,这些被收集的历史数据的摘要通常显示为视觉星系显示板。吴教授说,大多数公司在做的80%的分析都被归为这一类。“你总是以描述性分析开始,然后如果你得到足够的数据就可以变得更加复杂,那么就可以进行实际构建的预测分析。如果你是更先进的,那么你基本上是做规范性的分析”吴博士说。
3.计算机用预测分析来感受
预测性分析是最简单的类型,是每个人都熟悉的趋势走向。你看一下数据,然后按照一定的趋势,你可以看到如果继续按照这个趋势,不管是明天还是将来,这将是一个特定的,可预测的值。吴博士说,有关预测分析的有趣的一点是,你不必只是预测未来,你其实也可以预测过去。在这种情况下,你要使用你没有的数据去进行预测。“预测分析是非常简单的,它基本上是你将数据放进模型并且模型的输出就会高速你一些你不知道的”吴博士说。
在社会化媒体中,有一组人们所熟悉的夫妇类型的预测分析。例如,情感分析实际上是预测性分析。“随着情绪的分析,没人真正出现问题并且报告显示他们的情绪对于苹果和安卓或者其它的都是积极的。他们说‘我唉我的iPhone‘或’我爱我的新机器人’。使用自然语言作为已知数据,我们建构一个使用语言处理的模式,所以当人们使用这种类型的语言,它通常意味着他们有积极的情绪或负面情绪,因此情绪其实是没有办法衡量的”吴博士说。
4.符合关键绩效指标与规范分析
一种规范分析的最简单的例子是谷歌地图,它规定你去哪里你想要去的路线。想预测分析,一旦你有一个模型,你可以去预测东西。有了规范的分析,可以去做你需要做的,并且你需要关注以便能够得到一个特定的业务绩效指标(KPI),比如实现最高的客户满意度和最大的收益。
5.进入可操作的结果
吴博士认为,无论是描述性的,预测性或规定性的,最终的目的是帮助企业决策者采取他们对数据的分析的行动。“行动-能力是非常重要的,很多人说,他们提供可操作性的分析,但他们实际上意味着什么?可操作性是分析的一种并且是一种可描述性分析;它告诉你行动的过程,你可以进行行动和影响的结果”吴博士。如果不能采取行动,那么它不是指令性的分析。
吴博士解释说,规范分析也就是我们所说的预测窗,这意味着这个窗口,你在做预测的误差范围内,还是可以接受这个概念。当我们谈论行动的能力,你必须另外的测试方式叫反应时间,那就是它需要你从哲学预测的时间内采取行动。“行动,最重要的测量标准是,你的反应时间要比以讹传讹时间要短”吴博士说。
吴博士的结论是,“我们不缺数据,随着大数据技术商品化后,可访问到的数据将会增加。我们需要的是用智能数据分析将大数据的字节转化为可操作的”。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21