作者:小伍哥
来源:AI入门学习
一、应用概述
最近做一个项目,发现很多场景,把汉字转换成拼音,然后进行深度学习分类,能够取得非常不错的效果,在做内容识别,特别是涉及到同音字的时候,转换成拼音就显得特别重要。比如垃圾广告识别:公众号、工仲号、躬总号,公众號、微信、威信、维伈.........,pypinyin是我用的一个比较好用的Python包,给大家分享下,当然,在其他很多场景也是可以使用的,排序、检索等等场合。
二、有关文档
GitHub: https://github.com/mozillazg/python-pinyin
文 档:https://pypinyin.readthedocs.io/zh_CN/master/
PyPi :https://pypi.org/project/pypinyin/
三、关于安装
#可以使用 pip 进行安装 pip install pypinyin #easy_install 安装 easy_install pypinyin #源码安装 python setup.py install
四、核心函数
1、pypinyin.pinyin
语法:pypinyin.pinyin(hans, style=Style.TONE, heteronym=False, errors='default', strict=True)
功能:将汉字转换为拼音,返回汉字的拼音列表。
参数:
from pypinyin import pinyin, Style import pypinyin #普通模式 pinyin('中心') [['zhōng'], ['xīn']] pinyin('公众号') [['gōng'], ['zhòng'], ['hào']] # 启用多音字模式 pinyin('中心', heteronym=True) [['zhōng', 'zhòng'], ['xīn']] # 设置拼音风格 pinyin('中心', style=Style.NORMAL ) #普通风格 [['zhong'], ['xin']] pinyin('中心', style=Style.FIRST_LETTER) [['z'], ['x']] pinyin('中心', style=Style.TONE2) [['zho1ng'], ['xi1n']] pinyin('中心', style=Style.TONE3) [['zhong1'], ['xin1']] pinyin('中心', style=Style.CYRILLIC) #汉语拼音与俄语字母对照风格 [['чжун1'], ['синь1']]
2、pypinyin.lazy_pinyin
语法:pypinyin.lazy_pinyin(hans, style=Style, errors='default', strict=True)
功能:将汉字转换为拼音,返回不包含多音字结果的拼音列表,与 pinyin() 的区别是返回的拼音是个字符串, 并且每个字只包含一个读音
参数:
from pypinyin import lazy_pinyin, Style import pypinyin lazy_pinyin('中心') ['zhong', 'xin']lazy_pinyin('微信公众号')['wei', 'xin', 'gong', 'zhong', 'hao'] lazy_pinyin('中心', style=Style.TONE) ['zhōng', 'xīn'] lazy_pinyin('中心', style=Style.FIRST_LETTER) ['z', 'x'] lazy_pinyin('中心', style=Style.TONE2) ['zho1ng', 'xi1n'] lazy_pinyin('中心', style=Style.CYRILLIC) ['чжун1', 'синь1']
3、pypinyin.slug
功能:将汉字转换为拼音,然后生成 slug 字符串,简单说就是自定义分隔符
语法:pypinyin.slug(hans , style=Style, heteronym=False, separator='-', errors='default', strict=True)
import pypinyin from pypinyin import Style pypinyin.slug('我是中国人') 'wo-shi-zhong-guo-ren' pypinyin.slug('我是中国人', separator=' ') 'wo shi zhong guo ren' pypinyin.slug('中国人2020雄起', separator=' ') #遇到数字等非汉字不注音'zhong guo ren 2020 xiong qi' pypinyin.slug('中国人2020雄起', style=Style.FIRST_LETTER) 'z-g-r-2020-x-q' pypinyin.slug('我是中国人', style=Style.CYRILLIC) 'во3-ши4-чжун1-го2-жэнь'
4、 pypinyin.load_single_dict
功能:载入用户自定义的单字拼音库
语法: pypinyin.load_single_dict(pinyin_dict, style='default')
参数:
5、 pypinyin.load_phrases_dict
功能:载入用户自定义的词语拼音库
语法: pypinyin.load_phrases_dict(phrases_dict, style='default')
参数:
五、一个案例
假如需要找出一个垃圾评价的相似样本,用汉语相似性远远小于拼音,这个时候,拼音就能发挥很大的优势。
当然转换成拼音后,把每个音节当一个词,进行深度学习,效果也是非常好的。
S1 = '加公众号:小优惠,领券,便宜购买'
S2 = '伽工仲号:小优惠,伶绻,便宜购买'
#汉语相似
simi_1 = len(set(S1).intersection(set(S2)))/len(set(S1).union(set(S2)))#相似不懂的可以看我前面集合的文章
simi_1
0.5
#转换成拼音后显示
S1 = lazy_pinyin(S1)
S2 = lazy_pinyin(S2)
simi_2 = len(set(S1).intersection(set(S2)))/len(set(S1).union(set(S2)))
simi_2
0.875
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20