京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:丁点helper
来源:丁点帮你
前面的文章提到,R语言是一门针对『对象』的语言,这里说的对象,最主要的就是数据。R可以创建、读取、处理多种类型的数据。今天先讲一些基本概念。
稍微接触过统计的同学应该很熟悉下图所示的变量类型,R中的多种数据类型可以满足各类变量的表达,我们逐一讲解:
1. 数值型(numeric):数据的内容为数字。上图中,定量变量和定性变量都可以用数值表示。下面的例子中,x, y, z, w 均为数值型数据。
x <- 175.3 #设 x为身高,x为定量变量(连续型) y <- 5 #设 y为家庭人口数,y为定量变量(离散型) z <- 6 #设 z为教育程度,6表示本科及以上,z为定性变量(有序) w <- 1 #设 w为性别,1表示女性,w为定性变量(无序)
2. 字符型(character):数据的内容为字符。字符型数据可用来表示定性变量,但不能表示定量变量。只要将内容放入英文双引号 "" 中,该数据即会被R识别为字符型。下面例子中的z, w 均为字符型数据。
z <- "本科及以上" #设 z为教育程度,z为定性变量(有序) w <- "女" #设 w为性别,w为定性变量(无序)
3. 逻辑型(logical):仅有两个取值,TRUE和FALSE,注意必须是大写。
4. 因子型(factor):因子是针对定性变量而言的,刚刚讲到定性变量既可以用数值、也可以用字符表示,在此基础上做一个简单的处理就会成为因子型数据。这个处理不会对数据的内容造成任何改变,但会有助于后续的统计分析工作,之后会详细讲。
科学研究中,x, y, z, w 这几个变量一般不可能都只有一个数据,而且不同变量之间还需要互相组合来完成统计分析。接下来我们就来看看多个数据、多个变量是怎么组合的。
R语言中的数据结构
在刚开始接触统计的时候,我们会经常强调一对概念——总体和样本。但是,这个问题在做回归时可能会被忽略。
初学者们通常会被向量、数组之类的名词搞得一头雾水,其实这些都是表达数据结构的名词,本质就是数据的组合形式。下图展示了R中5种数据结构。
将每一个小的正方体看做一个数据,那么:
(a) 向量(vector)就是一连串数据的组合,可以看做是一行或一列数据,其中的数据类型可以是数值型、字符型、逻辑型或因子型。注意,单个向量中的数据必须拥有相同的类型。
比如上图(a)中的三个小方块可以是1, 20, 100这三个数字,也可以是"小学", "初中", "大学"这三个字符,或是TRUE, FALSE, FALSE这样的逻辑型数据。
(b) 矩阵(matrix)是具有一定行数和列数的数据集合。其数据类型可以是数值型、字符型、逻辑型或因子型。矩阵中所有数据的类型必须相同。
(c) 数组(array)是矩阵的推广,即在矩阵拥有的两个维度(行、列)的基础上增加了第三个维度。其中的数据也只能拥有一种类型。该类数据结构在一般的统计分析中不常用。
(d) 数据框(data frame)的结构类似于矩阵,但它可包含多种数据类型(数值型、字符型、逻辑型或因子型),是最常用的数据结构。通常,数据框中的行表示观察对象(也叫观测/observation),列表示变量(variable)。
(e) 列表(list)像一个大抽屉,可以将若干(可能无关的)数据信息整合到单个数据结构中。这里的数据信息可以是包括列表在内的五种数据结构中的任意一种或几种。在R中,由于许多函数的运行结果都是以列表的形式返回的,因此该类数据结构也是学习的重点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23