作者:丁点helper
来源: 丁点帮你
上一篇文章给大家留了一个思考题,问在假设检验时下面哪种写法是正确的:
大家都答对了吗?正确答案是“A”。
样本与总体回归系数的区分
这一点内容看似很简单,但其实经常有同学犯糊涂,所以,还是值得专门说一下。
回归系数的计算
借用我们讲相关分析时的例子:探讨粮食中某种毒素(DON)对骨关节炎评分(OAP)的影响,数据如下:
无论是做回归还是相关分析,我们拿到数据的第一步应该是先画一个散点图:以因变量Y为纵轴,以自变量X为横轴(如果有多个自变量,则让Y逐一与X画散点图)。
本例我们研究的是DON对OAP的影响,所以以OAP为Y,以DON为X,散点图如下:
如上图,两变量之间正向的线性关系还是很明显的,随着DON的提升,OAP也有上升的趋势,所以推测,粮食中DON毒素可能会导致患者关节炎的发生。
回归方程在几何上是一条直线,所以问题归结于怎么样找到一条这样的直线。
因为我们希望回归直线尽可能最优,所以就需要做出的直线离各散点的综合距离最小。
如下图中的u1、u2,代表了散点与回归直线的距离。
如下图,我们根据肉眼观察,对关节炎的数据画出来两条线:蓝线和红线,问题是到底选择哪一条线呢?
肉眼观察肯定不靠谱,只能通过数学计算来比较判断,如何判断呢?本质上这是一个求最小值的问题。
上面说过了,我们希望得到的直线离所有散点的综合距离最小,怎么把这句话转变成数学计算呢?
所谓的“综合距离”最小,用数学的语言来表达就是让下面这个式子取最小值
综合起来可以写成:
别被复杂的式子唬住,其实这里只需要初中或高中的数学就能解决。耐心的小伙伴可以尝试展开一下,其实就是一个二次函数。
求解出来的结果是:
以上这个过程就是大家总能听到的“最小二乘法”。
回到我们关节炎的例子,最后得出其回归方程为:
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21