作者:梁唐
来源:早起Python
大家好,今天为大家介绍python当中一个很好用也是很基础的工具库,叫做collections。collection在英文当中有容器的意思,所以顾名思义,这是一个容器的集合。这个库当中的容器很多,有一些不是很常用,本篇文章选择了其中最常用的几个,一起介绍给大家。
defaultdict
defaultdict可以说是这个库当中使用最简单的一个,并且它的定义也很简单,我们从名称基本上就能看得出来。它解决的是我们使用dict当中最常见的问题,就是key为空的情况。
在正常情况下,我们在dict中获取元素的时候,都需要考虑key为空的情况。如果不考虑这点,那么当我们获取了一个不存在的key,会导致系统抛出异常。我们当然可以在每次get之前写一个if判断,但是这很麻烦,比如:
if key in dict: return dict[key] else: return None
当然,这是最笨的方法,dict当中为我们提供了带默认值的get方法。比如,我们可以写成:
return dict.get(key, None)
这样,当key不在dict当中存在的时候,会自动返回我们设置的默认值。这个省去了很多麻烦的判断,但是在一些特殊情况下仍然存在一点问题。举个例子,比如当key存在重复,我们希望将key相同的value存进一个list当中,而不是只保留一个。这种情况下写成代码就会比较复杂:
data = [(1, 3), (2, 1), (1, 4), (2, 5), (3, 7)] d = {} for k, v in data: if k in d: d[k].append(v) else: d[k] = [v]
由于dict的value是一个list,所以我们还是需要判断是否为空,不能直接使用默认值,间接操作当然可以,但是还是不够简单:
for k, v in data: cur = d.get(k, []) cur.append(v) d[k] = v
这和使用if区别并不大,为了完美解决这个问题,我们可以使用collections当中的defaultdict:
from collections import defaultdict d = defaultdict(list) for k, v in data: d[k].append(v)
使用defaultdict之后,如果key不存在,容器会自动返回我们预先设置的默认值。需要注意的是defaultdict传入的默认值可以是一个类型也可以是一个方法。如果我们传入int,那么默认值会被设置成int()的结果,也就是0,如果我们想要自定义或者修改,我们可以传入一个方法,比如:
d = defaultdict(lambda: 3) for k, v in data: d[k] += v
Counter
这是一个非常常用和非常强大的工具,我们经常用到。
在我们实际的编程当中,我们经常遇到一个问题,就是数数和排序。比如说我们在分析文本的时候,会得到一堆单词。其中可能有大量的长尾词,在整个文本当中可能只出现过寥寥几次。于是我们希望计算一下这些单词出现过的数量,只保留出现次数最高的若干个。
这个需求让我们自己实现当然也不困难,我们完全可以创建一个dict,然后对这些单词一个一个遍历。原本我们还需要考虑单词之前没有出现过的情况,如果我们上面说的defaultdict,又要简单许多。但是我们还是少不了计数然后排序的步骤,如果使用Counter这个步骤会缩减成一行代码。
举个例子:
words = ['apple', 'apple', 'pear', 'watermelon', 'pear', 'peach'] from collections import Counter counter = Counter(words) >>> print(counter) Counter({'apple': 2, 'pear': 2, 'watermelon': 1, 'peach': 1})
我们直接将一个list传入Counter中作为参数,它会自动为我们替当中的每个元素计数。
如果我们要筛选topK,也非常简单,它为我们提供了most_common方法,我们只需要传入需要求的K即可:
counter.most_common(1) [('apple', 2)]
除此之外,它的构造函数还接收dict类型。我们可以直接通过一个value是int类型的dict来初始化一个Counter,比如:
c = Counter({'apple': 5, 'pear': 4}) c = Counter(apple=4, pear=3)
并且,它还支持加减法的操作,比如我们可以将两个Counter相加,它会自动将两个Counter合并,相同的key对应的value累加。相减也是同理,会将能对应的value做减法,被减的key对应不上的会保留,而减数中对应不上的key则会被丢弃。并且需要注意,Counter支持value为负数。
deque
我们都知道queue是队列,deque也是队列,不过稍稍特殊一些,是双端队列。对于queue来说,只允许在队尾插入元素,在队首弹出元素。而deque既然称为双端队列,那么说明它的队首和队尾都支持元素的插入和弹出。相比于普通的队列,要更加灵活一些。
除了常用的clear、copy、count、extend等api之外,deque当中最常用也是最核心的api还有append、pop、appendleft和popleft。从名字上我们就看得出来,append和pop和list的append和pop一样,而appendleft和popleft则是在队列左侧,也就是头部进行pop和append的操作。非常容易理解。
在日常的使用当中,真正用到双端队列的算法其实不太多。大多数情况下我们使用deque主要有两个原因,第一个原因是deque收到GIL的管理,它是线程安全的。而list则没有GIL锁,因此不是线程安全的。也就是说在并发场景下,list可能会导致一致性问题,而deque不会。另一个原因是deque支持固定长度,当长度满了之后,当我们继续append时,它会自动弹出最早插入的数据。
比如说当我们拥有海量的数据,我们不知道它的数量,但是想要保留最后出现的指定数量的数据的时候,就可以使用deque。
from collections import deque dque = deque(maxlen=10) # 假设我们想要从文件当中获取最后10条数据 for i in f.read(): dque.append(i)
namedtuple
namedtuple很特殊,它涉及到元编程的概念。简单介绍一下元编程的概念,我们不做过多的深入。简而言之,就是在常见的面向对象当中。我们都是定义类,然后通过类的构造函数来创建实例。而元编程指的是我们定义元类,根据元类创建出来的并不是一个实例,而是一个类。如果用模具和成品来分别比喻类和实例的话,元类相当于是模具的模具。
namedtuple是一个非常简单的元类,通过它我们可以非常方便地定义我们想要的类。
它的用法很简单,我们直接来看例子。比如如果我们想要定义一个学生类,这个类当中有name、score、age这三个字段,那么这个类会写成:
class Student: def __init__(self, name=None, score=None, age=None): self.name = name self.score = score self.age = age
这还只是粗略的写法,如果考虑规范,还需要定义property等注解,又需要很多代码。如果我们使用namedtuple可以简化这个工作,我们来看代码:
from collections import namedtuple # 这个是类,columns也可以写成'name score age',即用空格分开 Student = namedtuple('Student', ['name', 'score', 'age']) # 这个是实例 student = Student(name='xiaoming', score=99, age=10) print(student.name)
通过使用namedtuple,我们只需要一行就定义了一个类,但是这样定义的类是没有缺失值的,但是namedtuple很强大,我们可以通过传入defaults参数来定义缺失值。
Student = namedtuple('Student', ['name', 'score', 'age'], defaults=(0, 0))
可以注意到,虽然我们定义了三个字段,但是我们只设置了两个缺失值。在这种情况下,namedtuple会自动将缺失值匹配上score和age两个字段。因为在Python的规范当中,必选参数一定在可选参数前面。所以nuamdtuple会自动右对齐。
细数一下,我们今天的文章当中介绍了defaultdict、Counter、deque和namedtuple这四种数据结构的用法。除了这四个之外,collections库当中还有一些其他的工具类,只是我们用的频率稍稍低一些,加上由于篇幅的原因,这里就不多做赘述了。感兴趣的同学可以自行查看相关的api和文档。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10