京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:丁点helper
来源:丁点帮你
回忆一下上一讲用到的例子:
输入数据的代码在上一讲详细讲解过,这里总结如下:
age <- c(25, 34, 59, 60, 20)
#患者年龄type <- c(1, 2, 2, 2, 1)
#糖尿病类型status <- c("poor", "improved", "excellent", "poor", "excellent")
#病情comorbidity<- c(TRUE, FALSE, FALSE, TRUE, FALSE)
#出现并发症
age、type、status、comorbidity中分别仅有一种数据类型,它们都是向量。本文介绍生成向量之后,如何对其进行简单的操作。
1. 查看与改变向量的数据类型
看到一个向量,首先要搞清楚其中包含的数据类型。就本例而言,从表面看也很容易区分,但实际上一项统计分析工作用到的向量可能很多,用函数class()可以快速知晓某向量的数据类型,例如:
class(age) [1] "numeric"class(type) [1] "numeric"class(status) [1] "character"class(comorbidity)[1] "logical"
不同类型的数据可以根据需要互相转换,用as.目标数据类型()函数:
as.numeric() #将括号中的内容转变为数值型数据 as.character() #转变为字符型as.logical() #转变为逻辑型as.factor() #转变为因子型
所以也可用as.character()将type中的数值型数据转变为字符型:
type[1] 1 2 2 2 1class(type) [1] "numeric" type <- as.character(type) # 注意要将新的结果赋值给typetype[1] "1" "2" "2" "2" "1"class(type)[1] "character"
之前讲过,将定性变量(即分类变量)以因子的形式输入会有助于后续的统计分析工作,factor()这个函数可以帮我们把数据转变为因子型:
type <- c(1, 2, 2, 2, 1) type <- factor(type) type[1] 1 2 2 2 1 Levels: 1 2class(type)[1] "factor"
用1和2这样的阿拉伯数字其实不太利于准确地表达数据内容,可以给原来的1和2加上标签:
type <- factor(type, levels = c("1", "2"),
labels = c("Type 1", "Type 2"))
type[1]
Type 1 Type 2 Type 2 Type 2 Type 1
Levels: Type 1 Type 2
所以在输入定性变量(分类变量)时可以采用这种简便方法。
再看另一个例子:
status[1] "poor" "improved" "excellent" "poor" "excellent" status <- factor(status)status[1] poor improved excellent poor excellentLevels: excellent improved poorclass(status)[1] "factor"
由于status是一个有序分类变量,所以在转变为因子时还应体现其顺序:
status <- factor(status, levels = c('poor', 'improved','excellent'),ordered = TRUE)
status[1]
poor improved excellent
poor excellentLevels:
poor < improved < excellent
这里的顺序是根据levels这个命令中的内容生成的,可自行调整levels命令中的顺序:
status <- factor(status, levels = c('excellent','improved' ,'poor'),ordered = TRUE)
status[1]
poor improved excellent
poor excellentLevels:
excellent < improved < poor
2. 向量中的数据定位
以age这个向量为例:
age <- c(25, 34, 59, 60, 20) age [1] 25 34 59 60 20
输出向量中排在第3位的数据:
age[3] [1] 59
输出排在1,2,5位的数据:
age[c(1,2,5)] [1] 25 34 20
输出1至3位的数据:
age[c(1:3)] [1] 25 34 59
3. 向量中的数据计算
以age这个向量为例:
age <- c(25, 34, 59, 60, 20) # 仍以age为例age [1] 25 34 59 60 20 age+4 # 给向量中每个数都加4 [1] 29 38 63 64 24 sqrt(age) # 求平方根 [1] 5.000000 5.830952 7.681146 7.745967 4.472136 sort(age) # 给数据从低到高排序 [1] 20 25 34 59 60 sort(age, decreasing =T) # 给数据从高到低排序 [1] 60 59 34 25 20 age2 <- c(20,30,40,50,60) # 再生成一个向量 age+age2 # 将两向量中的元素相加 [1] 45 64 99 110 80
4. 生成特定形式的向量
生成重复数据。用rep(x, ……),x表示要重复的内容。
rep(1,times=5) #times表示重复的次数 [1] 1 1 1 1 1 rep(c(1,2),4) #times这个表达可以省略 [1] 1 2 1 2 1 2 1 2 rep(c(1,2),each=4) #each也是针对重复次数的命令 [1] 1 1 1 1 2 2 2 2
特定间隔的数据。用seq(from,to,by)这个函数,from为起始值,to为终止值,by为数据之间的间隔。
seq(1,100,19) #from,to,by都可以省略 [1] 1 20 39 58 77 96 seq(1,10) #如果不指定by的内容,则默认为1 [1] 1 2 3 4 5 6 7 8 9 10
下一篇介绍数据框的相关操作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23