CDA数据分析师 出品
作者:Mika
数据:真达
后期:Mika
【导读】手把手教你如何用python写出心血管疾病预测模型。
全球每年约有1700万人死于心血管疾病,当中主要表现为心肌梗死和心力衰竭。当心脏不能泵出足够的血液来满足人体的需要时,就会发生心力衰竭,通常由糖尿病、高血压或其他心脏疾病引起。
在检测心血管疾病的早期症状时,机器学习就能派上用场了。通过患者的电子病历,可以记录患者的症状、身体特征、临床实验室测试值,从而进行生物统计分析,这能够发现那些医生无法检测到的模式和相关性。
尤其通过机器学习,根据数据就能预测患者的存活率,今天我们就教大家如何用Python写一个心血管疾病的预测模型。
研究背景和数据来源
我们用到的数据集来自Davide Chicco和Giuseppe Jurman发表的论文:《机器学习可以仅通过血肌酐和射血分数来预测心力衰竭患者的生存率》。
他们收集整理了299名心力衰竭患者的医疗记录,这些患者数据来自2015年4月至12月间巴基斯坦费萨拉巴德心脏病研究所和费萨拉巴德联合医院。这些患者由105名女性和194名男性组成,年龄在40至95岁之间。所有299例患者均患有左心室收缩功能不全,并曾出现过心力衰竭。
Davide和Giuseppe应用了多个机器学习分类器来预测患者的生存率,并根据最重要的危险因素对特征进行排序。同时还利用传统的生物统计学测试进行了另一种特征排序分析,并将这些结果与机器学习算法提供的结果进行比较。
他们分析对比了心力衰竭患者的一系列数据,最终发现根据血肌酐和射血分数这两项数据能够很好的预测心力衰竭患者的存活率。
今天我们就教教大家,如果根据这共13个字段的299 条病人诊断记录,用Python写出预测心力衰竭患者存活率的预测模型。
下面是具体的步骤和关键代码。
01、数据理解
数据取自于kaggle平台分享的心血管疾病数据集,共有13个字段299 条病人诊断记录。具体的字段概要如下:
02、数据读入和初步处理
首先导入所需包。
# 数据整理 import numpy as np import pandas as pd # 可视化 import matplotlib.pyplot as plt import seaborn as sns import plotly as py import plotly.graph_objs as go import plotly.express as px import plotly.figure_factory as ff # 模型建立 from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier import lightgbm # 前处理 from sklearn.preprocessing import StandardScaler # 模型评估 from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import plot_confusion_matrix, confusion_matrix, f1_score
加载并预览数据集:
# 读入数据 df = pd.read_csv('./data/heart_failure.csv') df.head()
03、探索性分析
1. 描述性分析
df.describe().T
从上述描述性分析结果简单总结如下:
2. 目标变量
# 产生数据 death_num = df['DEATH_EVENT'].value_counts() death_num = death_num.reset_index() # 饼图 fig = px.pie(death_num, names='index', values='DEATH_EVENT') fig.update_layout(title_text='目标变量DEATH_EVENT的分布') py.offline.plot(fig, filename='./html/目标变量DEATH_EVENT的分布.html')
总共有299人,其中随访期未存活人数96人,占总人数的32.1%
3. 贫血
从图中可以看出,有贫血症状的患者死亡概率较高,为35.66%。
bar1 = draw_categorical_graph(df['anaemia'], df['DEATH_EVENT'], title='红细胞、血红蛋白减少和是否存活') bar1.render('./html/红细胞血红蛋白减少和是否存活.html')
4. 年龄
从直方图可以看出,在患心血管疾病的病人中年龄分布差异较大,表现趋势为年龄越大,生存比例越低、死亡的比例越高。
# 产生数据 surv = df[df['DEATH_EVENT'] == 0]['age'] not_surv = df[df['DEATH_EVENT'] == 1]['age'] hist_data = [surv, not_surv] group_labels = ['Survived', 'Not Survived'] # 直方图 fig = ff.create_distplot(hist_data, group_labels, bin_size=0.5) fig.update_layout(title_text='年龄和生存状态关系') py.offline.plot(fig, filename='./html/年龄和生存状态关系.html')
5. 年龄/性别
从分组统计和图形可以看出,不同性别之间生存状态没有显著性差异。在死亡的病例中,男性的平均年龄相对较高。
6. 年龄/抽烟
数据显示,整体来看,是否抽烟与生存与否没有显著相关性。但是当我们关注抽烟的人群中,年龄在50岁以下生存概率较高。
7. 磷酸肌酸激酶(CPK)
从直方图可以看出,血液中CPK酶的水平较高的人群死亡的概率较高。
8. 射血分数
射血分数代表了心脏的泵血功能,过高和过低水平下,生存的概率较低。
9. 血小板
血液中血小板(100~300)×10^9个/L,较高或较低的水平则代表不正常,存活的概率较低。
10. 血肌酐水平
血肌酐是检测肾功能的最常用指标,较高的指数代表肾功能不全、肾衰竭,有较高的概率死亡。
11. 血清钠水平
图形显示,血清钠较高或较低往往伴随着风险。
12. 相关性分析
从数值型属性的相关性图可以看出,变量之间没有显著的共线性关系。
num_df = df[['age', 'creatinine_phosphokinase', 'ejection_fraction', 'platelets', 'serum_creatinine', 'serum_sodium']] plt.figure(figsize=(12, 12)) sns.heatmap(num_df.corr(), vmin=-1, cmap='coolwarm', linewidths=0.1, annot=True) plt.title('Pearson correlation coefficient between numeric variables', fontdict={'fontsize': 15}) plt.show()
04、特征筛选
我们使用统计方法进行特征筛选,目标变量DEATH_EVENT是分类变量时,当自变量是分类变量,使用卡方鉴定,自变量是数值型变量,使用方差分析。
# 划分X和y X = df.drop('DEATH_EVENT', axis=1) y = df['DEATH_EVENT']
from feature_selection import Feature_select fs = Feature_select(num_method='anova', cate_method='kf') X_selected = fs.fit_transform(X, y) X_selected.head()
2020 17:19:49 INFO attr select success! After select attr: ['serum_creatinine', 'serum_sodium', 'ejection_fraction', 'age', 'time']
05、数据建模
首先划分训练集和测试集。
# 划分训练集和测试集 Features = X_selected.columns X = df[Features] y = df["DEATH_EVENT"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=2020)
# 标准化 scaler = StandardScaler() scaler_Xtrain = scaler.fit_transform(X_train) scaler_Xtest = scaler.fit_transform(X_test) lr = LogisticRegression() lr.fit(scaler_Xtrain, y_train) test_pred = lr.predict(scaler_Xtest) # F1-score print("F1_score of LogisticRegression is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2))
我们使用决策树进行建模,设置特征选择标准为gini,树的深度为5。输出混淆矩阵图:在这个案例中,1类是我们关注的对象。
# DecisionTreeClassifier clf = DecisionTreeClassifier(criterion='gini', max_depth=5, random_state=1) clf.fit(X_train, y_train) test_pred = clf.predict(X_test) # F1-score print("F1_score of DecisionTreeClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2)) # 绘图 plt.figure(figsize=(10, 7)) plot_confusion_matrix(clf, X_test, y_test, cmap='Blues') plt.title("DecisionTreeClassifier - Confusion Matrix", fontsize=15) plt.xticks(range(2), ["Heart Not Failed","Heart Fail"], fontsize=12) plt.yticks(range(2), ["Heart Not Failed","Heart Fail"], fontsize=12) plt.show()
F1_score of DecisionTreeClassifier is : 0.61 <Figure size 720x504 with 0 Axes>
使用网格搜索进行参数调优,优化标准为f1。
parameters = {'splitter':('best','random'), 'criterion':("gini","entropy"), "max_depth":[*range(1, 20)], } clf = DecisionTreeClassifier(random_state=1) GS = GridSearchCV(clf, param_grid=parameters, cv=10, scoring='f1', n_jobs=-1) GS.fit(X_train, y_train) print(GS.best_params_) print(GS.best_score_)
{'criterion': 'entropy', 'max_depth': 3, 'splitter': 'best'} 0.7638956305132776
使用最优的模型重新评估测试集效果:
test_pred = GS.best_estimator_.predict(X_test) # F1-score print("F1_score of DecisionTreeClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2)) # 绘图 plt.figure(figsize=(10, 7)) plot_confusion_matrix(GS, X_test, y_test, cmap='Blues') plt.title("DecisionTreeClassifier - Confusion Matrix", fontsize=15) plt.xticks(range(2), ["Heart Not Failed","Heart Fail"], fontsize=12) plt.yticks(range(2), ["Heart Not Failed","Heart Fail"], fontsize=12) plt.show()
使用随机森林
# RandomForestClassifier rfc = RandomForestClassifier(n_estimators=1000, random_state=1) parameters = {'max_depth': np.arange(2, 20, 1) } GS = GridSearchCV(rfc, param_grid=parameters, cv=10, scoring='f1', n_jobs=-1) GS.fit(X_train, y_train) print(GS.best_params_) print(GS.best_score_) test_pred = GS.best_estimator_.predict(X_test) # F1-score print("F1_score of RandomForestClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2))
{'max_depth': 3} 0.791157747481277 F1_score of RandomForestClassifier is : 0.53
使用Boosting
gbl = GradientBoostingClassifier(n_estimators=1000, random_state=1) parameters = {'max_depth': np.arange(2, 20, 1) } GS = GridSearchCV(gbl, param_grid=parameters, cv=10, scoring='f1', n_jobs=-1) GS.fit(X_train, y_train) print(GS.best_params_) print(GS.best_score_) # 测试集 test_pred = GS.best_estimator_.predict(X_test) # F1-score print("F1_score of GradientBoostingClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2))
{'max_depth': 3} 0.7288420428900305 F1_score of GradientBoostingClassifier is : 0.65
使用LGBMClassifier
lgb_clf = lightgbm.LGBMClassifier(boosting_type='gbdt', random_state=1) parameters = {'max_depth': np.arange(2, 20, 1) } GS = GridSearchCV(lgb_clf, param_grid=parameters, cv=10, scoring='f1', n_jobs=-1) GS.fit(X_train, y_train) print(GS.best_params_) print(GS.best_score_) # 测试集 test_pred = GS.best_estimator_.predict(X_test) # F1-score print("F1_score of LGBMClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2))
{'max_depth': 2} 0.780378102289867 F1_score of LGBMClassifier is : 0.74
以下为各模型在测试集上的表现效果对比:
LogisticRegression:0.63
DecisionTree Classifier:0.73
Random Forest Classifier: 0.53
GradientBoosting Classifier: 0.65
LGBM Classifier: 0.74
参考链接:
Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-020-1023-5#Abs1
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26