CDA数据分析师 出品
作者:Mika
数据:真达
后期:Mika
【导读】手把手教你如何用python写出心血管疾病预测模型。
全球每年约有1700万人死于心血管疾病,当中主要表现为心肌梗死和心力衰竭。当心脏不能泵出足够的血液来满足人体的需要时,就会发生心力衰竭,通常由糖尿病、高血压或其他心脏疾病引起。
在检测心血管疾病的早期症状时,机器学习就能派上用场了。通过患者的电子病历,可以记录患者的症状、身体特征、临床实验室测试值,从而进行生物统计分析,这能够发现那些医生无法检测到的模式和相关性。
尤其通过机器学习,根据数据就能预测患者的存活率,今天我们就教大家如何用Python写一个心血管疾病的预测模型。
研究背景和数据来源
我们用到的数据集来自Davide Chicco和Giuseppe Jurman发表的论文:《机器学习可以仅通过血肌酐和射血分数来预测心力衰竭患者的生存率》。
他们收集整理了299名心力衰竭患者的医疗记录,这些患者数据来自2015年4月至12月间巴基斯坦费萨拉巴德心脏病研究所和费萨拉巴德联合医院。这些患者由105名女性和194名男性组成,年龄在40至95岁之间。所有299例患者均患有左心室收缩功能不全,并曾出现过心力衰竭。
Davide和Giuseppe应用了多个机器学习分类器来预测患者的生存率,并根据最重要的危险因素对特征进行排序。同时还利用传统的生物统计学测试进行了另一种特征排序分析,并将这些结果与机器学习算法提供的结果进行比较。
他们分析对比了心力衰竭患者的一系列数据,最终发现根据血肌酐和射血分数这两项数据能够很好的预测心力衰竭患者的存活率。
今天我们就教教大家,如果根据这共13个字段的299 条病人诊断记录,用Python写出预测心力衰竭患者存活率的预测模型。
下面是具体的步骤和关键代码。
01、数据理解
数据取自于kaggle平台分享的心血管疾病数据集,共有13个字段299 条病人诊断记录。具体的字段概要如下:
02、数据读入和初步处理
首先导入所需包。
# 数据整理 import numpy as np import pandas as pd # 可视化 import matplotlib.pyplot as plt import seaborn as sns import plotly as py import plotly.graph_objs as go import plotly.express as px import plotly.figure_factory as ff # 模型建立 from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier import lightgbm # 前处理 from sklearn.preprocessing import StandardScaler # 模型评估 from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import plot_confusion_matrix, confusion_matrix, f1_score
加载并预览数据集:
# 读入数据 df = pd.read_csv('./data/heart_failure.csv') df.head()
03、探索性分析
1. 描述性分析
df.describe().T
从上述描述性分析结果简单总结如下:
2. 目标变量
# 产生数据 death_num = df['DEATH_EVENT'].value_counts() death_num = death_num.reset_index() # 饼图 fig = px.pie(death_num, names='index', values='DEATH_EVENT') fig.update_layout(title_text='目标变量DEATH_EVENT的分布') py.offline.plot(fig, filename='./html/目标变量DEATH_EVENT的分布.html')
总共有299人,其中随访期未存活人数96人,占总人数的32.1%
3. 贫血
从图中可以看出,有贫血症状的患者死亡概率较高,为35.66%。
bar1 = draw_categorical_graph(df['anaemia'], df['DEATH_EVENT'], title='红细胞、血红蛋白减少和是否存活') bar1.render('./html/红细胞血红蛋白减少和是否存活.html')
4. 年龄
从直方图可以看出,在患心血管疾病的病人中年龄分布差异较大,表现趋势为年龄越大,生存比例越低、死亡的比例越高。
# 产生数据 surv = df[df['DEATH_EVENT'] == 0]['age'] not_surv = df[df['DEATH_EVENT'] == 1]['age'] hist_data = [surv, not_surv] group_labels = ['Survived', 'Not Survived'] # 直方图 fig = ff.create_distplot(hist_data, group_labels, bin_size=0.5) fig.update_layout(title_text='年龄和生存状态关系') py.offline.plot(fig, filename='./html/年龄和生存状态关系.html')
5. 年龄/性别
从分组统计和图形可以看出,不同性别之间生存状态没有显著性差异。在死亡的病例中,男性的平均年龄相对较高。
6. 年龄/抽烟
数据显示,整体来看,是否抽烟与生存与否没有显著相关性。但是当我们关注抽烟的人群中,年龄在50岁以下生存概率较高。
7. 磷酸肌酸激酶(CPK)
从直方图可以看出,血液中CPK酶的水平较高的人群死亡的概率较高。
8. 射血分数
射血分数代表了心脏的泵血功能,过高和过低水平下,生存的概率较低。
9. 血小板
血液中血小板(100~300)×10^9个/L,较高或较低的水平则代表不正常,存活的概率较低。
10. 血肌酐水平
血肌酐是检测肾功能的最常用指标,较高的指数代表肾功能不全、肾衰竭,有较高的概率死亡。
11. 血清钠水平
图形显示,血清钠较高或较低往往伴随着风险。
12. 相关性分析
从数值型属性的相关性图可以看出,变量之间没有显著的共线性关系。
num_df = df[['age', 'creatinine_phosphokinase', 'ejection_fraction', 'platelets', 'serum_creatinine', 'serum_sodium']] plt.figure(figsize=(12, 12)) sns.heatmap(num_df.corr(), vmin=-1, cmap='coolwarm', linewidths=0.1, annot=True) plt.title('Pearson correlation coefficient between numeric variables', fontdict={'fontsize': 15}) plt.show()
04、特征筛选
我们使用统计方法进行特征筛选,目标变量DEATH_EVENT是分类变量时,当自变量是分类变量,使用卡方鉴定,自变量是数值型变量,使用方差分析。
# 划分X和y X = df.drop('DEATH_EVENT', axis=1) y = df['DEATH_EVENT']
from feature_selection import Feature_select fs = Feature_select(num_method='anova', cate_method='kf') X_selected = fs.fit_transform(X, y) X_selected.head()
2020 17:19:49 INFO attr select success! After select attr: ['serum_creatinine', 'serum_sodium', 'ejection_fraction', 'age', 'time']
05、数据建模
首先划分训练集和测试集。
# 划分训练集和测试集 Features = X_selected.columns X = df[Features] y = df["DEATH_EVENT"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=2020)
# 标准化 scaler = StandardScaler() scaler_Xtrain = scaler.fit_transform(X_train) scaler_Xtest = scaler.fit_transform(X_test) lr = LogisticRegression() lr.fit(scaler_Xtrain, y_train) test_pred = lr.predict(scaler_Xtest) # F1-score print("F1_score of LogisticRegression is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2))
我们使用决策树进行建模,设置特征选择标准为gini,树的深度为5。输出混淆矩阵图:在这个案例中,1类是我们关注的对象。
# DecisionTreeClassifier clf = DecisionTreeClassifier(criterion='gini', max_depth=5, random_state=1) clf.fit(X_train, y_train) test_pred = clf.predict(X_test) # F1-score print("F1_score of DecisionTreeClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2)) # 绘图 plt.figure(figsize=(10, 7)) plot_confusion_matrix(clf, X_test, y_test, cmap='Blues') plt.title("DecisionTreeClassifier - Confusion Matrix", fontsize=15) plt.xticks(range(2), ["Heart Not Failed","Heart Fail"], fontsize=12) plt.yticks(range(2), ["Heart Not Failed","Heart Fail"], fontsize=12) plt.show()
F1_score of DecisionTreeClassifier is : 0.61 <Figure size 720x504 with 0 Axes>
使用网格搜索进行参数调优,优化标准为f1。
parameters = {'splitter':('best','random'), 'criterion':("gini","entropy"), "max_depth":[*range(1, 20)], } clf = DecisionTreeClassifier(random_state=1) GS = GridSearchCV(clf, param_grid=parameters, cv=10, scoring='f1', n_jobs=-1) GS.fit(X_train, y_train) print(GS.best_params_) print(GS.best_score_)
{'criterion': 'entropy', 'max_depth': 3, 'splitter': 'best'} 0.7638956305132776
使用最优的模型重新评估测试集效果:
test_pred = GS.best_estimator_.predict(X_test) # F1-score print("F1_score of DecisionTreeClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2)) # 绘图 plt.figure(figsize=(10, 7)) plot_confusion_matrix(GS, X_test, y_test, cmap='Blues') plt.title("DecisionTreeClassifier - Confusion Matrix", fontsize=15) plt.xticks(range(2), ["Heart Not Failed","Heart Fail"], fontsize=12) plt.yticks(range(2), ["Heart Not Failed","Heart Fail"], fontsize=12) plt.show()
使用随机森林
# RandomForestClassifier rfc = RandomForestClassifier(n_estimators=1000, random_state=1) parameters = {'max_depth': np.arange(2, 20, 1) } GS = GridSearchCV(rfc, param_grid=parameters, cv=10, scoring='f1', n_jobs=-1) GS.fit(X_train, y_train) print(GS.best_params_) print(GS.best_score_) test_pred = GS.best_estimator_.predict(X_test) # F1-score print("F1_score of RandomForestClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2))
{'max_depth': 3} 0.791157747481277 F1_score of RandomForestClassifier is : 0.53
使用Boosting
gbl = GradientBoostingClassifier(n_estimators=1000, random_state=1) parameters = {'max_depth': np.arange(2, 20, 1) } GS = GridSearchCV(gbl, param_grid=parameters, cv=10, scoring='f1', n_jobs=-1) GS.fit(X_train, y_train) print(GS.best_params_) print(GS.best_score_) # 测试集 test_pred = GS.best_estimator_.predict(X_test) # F1-score print("F1_score of GradientBoostingClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2))
{'max_depth': 3} 0.7288420428900305 F1_score of GradientBoostingClassifier is : 0.65
使用LGBMClassifier
lgb_clf = lightgbm.LGBMClassifier(boosting_type='gbdt', random_state=1) parameters = {'max_depth': np.arange(2, 20, 1) } GS = GridSearchCV(lgb_clf, param_grid=parameters, cv=10, scoring='f1', n_jobs=-1) GS.fit(X_train, y_train) print(GS.best_params_) print(GS.best_score_) # 测试集 test_pred = GS.best_estimator_.predict(X_test) # F1-score print("F1_score of LGBMClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2))
{'max_depth': 2} 0.780378102289867 F1_score of LGBMClassifier is : 0.74
以下为各模型在测试集上的表现效果对比:
LogisticRegression:0.63
DecisionTree Classifier:0.73
Random Forest Classifier: 0.53
GradientBoosting Classifier: 0.65
LGBM Classifier: 0.74
参考链接:
Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-020-1023-5#Abs1
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14