CDA数据分析师 出品
作者:Mika
数据:真达
后期:Mika
【导读】手把手教你如何用python写出心血管疾病预测模型。
全球每年约有1700万人死于心血管疾病,当中主要表现为心肌梗死和心力衰竭。当心脏不能泵出足够的血液来满足人体的需要时,就会发生心力衰竭,通常由糖尿病、高血压或其他心脏疾病引起。
在检测心血管疾病的早期症状时,机器学习就能派上用场了。通过患者的电子病历,可以记录患者的症状、身体特征、临床实验室测试值,从而进行生物统计分析,这能够发现那些医生无法检测到的模式和相关性。
尤其通过机器学习,根据数据就能预测患者的存活率,今天我们就教大家如何用Python写一个心血管疾病的预测模型。
研究背景和数据来源
我们用到的数据集来自Davide Chicco和Giuseppe Jurman发表的论文:《机器学习可以仅通过血肌酐和射血分数来预测心力衰竭患者的生存率》。
他们收集整理了299名心力衰竭患者的医疗记录,这些患者数据来自2015年4月至12月间巴基斯坦费萨拉巴德心脏病研究所和费萨拉巴德联合医院。这些患者由105名女性和194名男性组成,年龄在40至95岁之间。所有299例患者均患有左心室收缩功能不全,并曾出现过心力衰竭。
Davide和Giuseppe应用了多个机器学习分类器来预测患者的生存率,并根据最重要的危险因素对特征进行排序。同时还利用传统的生物统计学测试进行了另一种特征排序分析,并将这些结果与机器学习算法提供的结果进行比较。
他们分析对比了心力衰竭患者的一系列数据,最终发现根据血肌酐和射血分数这两项数据能够很好的预测心力衰竭患者的存活率。
今天我们就教教大家,如果根据这共13个字段的299 条病人诊断记录,用Python写出预测心力衰竭患者存活率的预测模型。
下面是具体的步骤和关键代码。
01、数据理解
数据取自于kaggle平台分享的心血管疾病数据集,共有13个字段299 条病人诊断记录。具体的字段概要如下:
02、数据读入和初步处理
首先导入所需包。
# 数据整理 import numpy as np import pandas as pd # 可视化 import matplotlib.pyplot as plt import seaborn as sns import plotly as py import plotly.graph_objs as go import plotly.express as px import plotly.figure_factory as ff # 模型建立 from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier import lightgbm # 前处理 from sklearn.preprocessing import StandardScaler # 模型评估 from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import plot_confusion_matrix, confusion_matrix, f1_score
加载并预览数据集:
# 读入数据 df = pd.read_csv('./data/heart_failure.csv') df.head()
03、探索性分析
1. 描述性分析
df.describe().T
从上述描述性分析结果简单总结如下:
2. 目标变量
# 产生数据 death_num = df['DEATH_EVENT'].value_counts() death_num = death_num.reset_index() # 饼图 fig = px.pie(death_num, names='index', values='DEATH_EVENT') fig.update_layout(title_text='目标变量DEATH_EVENT的分布') py.offline.plot(fig, filename='./html/目标变量DEATH_EVENT的分布.html')
总共有299人,其中随访期未存活人数96人,占总人数的32.1%
3. 贫血
从图中可以看出,有贫血症状的患者死亡概率较高,为35.66%。
bar1 = draw_categorical_graph(df['anaemia'], df['DEATH_EVENT'], title='红细胞、血红蛋白减少和是否存活') bar1.render('./html/红细胞血红蛋白减少和是否存活.html')
4. 年龄
从直方图可以看出,在患心血管疾病的病人中年龄分布差异较大,表现趋势为年龄越大,生存比例越低、死亡的比例越高。
# 产生数据 surv = df[df['DEATH_EVENT'] == 0]['age'] not_surv = df[df['DEATH_EVENT'] == 1]['age'] hist_data = [surv, not_surv] group_labels = ['Survived', 'Not Survived'] # 直方图 fig = ff.create_distplot(hist_data, group_labels, bin_size=0.5) fig.update_layout(title_text='年龄和生存状态关系') py.offline.plot(fig, filename='./html/年龄和生存状态关系.html')
5. 年龄/性别
从分组统计和图形可以看出,不同性别之间生存状态没有显著性差异。在死亡的病例中,男性的平均年龄相对较高。
6. 年龄/抽烟
数据显示,整体来看,是否抽烟与生存与否没有显著相关性。但是当我们关注抽烟的人群中,年龄在50岁以下生存概率较高。
7. 磷酸肌酸激酶(CPK)
从直方图可以看出,血液中CPK酶的水平较高的人群死亡的概率较高。
8. 射血分数
射血分数代表了心脏的泵血功能,过高和过低水平下,生存的概率较低。
9. 血小板
血液中血小板(100~300)×10^9个/L,较高或较低的水平则代表不正常,存活的概率较低。
10. 血肌酐水平
血肌酐是检测肾功能的最常用指标,较高的指数代表肾功能不全、肾衰竭,有较高的概率死亡。
11. 血清钠水平
图形显示,血清钠较高或较低往往伴随着风险。
12. 相关性分析
从数值型属性的相关性图可以看出,变量之间没有显著的共线性关系。
num_df = df[['age', 'creatinine_phosphokinase', 'ejection_fraction', 'platelets', 'serum_creatinine', 'serum_sodium']] plt.figure(figsize=(12, 12)) sns.heatmap(num_df.corr(), vmin=-1, cmap='coolwarm', linewidths=0.1, annot=True) plt.title('Pearson correlation coefficient between numeric variables', fontdict={'fontsize': 15}) plt.show()
04、特征筛选
我们使用统计方法进行特征筛选,目标变量DEATH_EVENT是分类变量时,当自变量是分类变量,使用卡方鉴定,自变量是数值型变量,使用方差分析。
# 划分X和y X = df.drop('DEATH_EVENT', axis=1) y = df['DEATH_EVENT']
from feature_selection import Feature_select fs = Feature_select(num_method='anova', cate_method='kf') X_selected = fs.fit_transform(X, y) X_selected.head()
2020 17:19:49 INFO attr select success! After select attr: ['serum_creatinine', 'serum_sodium', 'ejection_fraction', 'age', 'time']
05、数据建模
首先划分训练集和测试集。
# 划分训练集和测试集 Features = X_selected.columns X = df[Features] y = df["DEATH_EVENT"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=2020)
# 标准化 scaler = StandardScaler() scaler_Xtrain = scaler.fit_transform(X_train) scaler_Xtest = scaler.fit_transform(X_test) lr = LogisticRegression() lr.fit(scaler_Xtrain, y_train) test_pred = lr.predict(scaler_Xtest) # F1-score print("F1_score of LogisticRegression is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2))
我们使用决策树进行建模,设置特征选择标准为gini,树的深度为5。输出混淆矩阵图:在这个案例中,1类是我们关注的对象。
# DecisionTreeClassifier clf = DecisionTreeClassifier(criterion='gini', max_depth=5, random_state=1) clf.fit(X_train, y_train) test_pred = clf.predict(X_test) # F1-score print("F1_score of DecisionTreeClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2)) # 绘图 plt.figure(figsize=(10, 7)) plot_confusion_matrix(clf, X_test, y_test, cmap='Blues') plt.title("DecisionTreeClassifier - Confusion Matrix", fontsize=15) plt.xticks(range(2), ["Heart Not Failed","Heart Fail"], fontsize=12) plt.yticks(range(2), ["Heart Not Failed","Heart Fail"], fontsize=12) plt.show()
F1_score of DecisionTreeClassifier is : 0.61 <Figure size 720x504 with 0 Axes>
使用网格搜索进行参数调优,优化标准为f1。
parameters = {'splitter':('best','random'), 'criterion':("gini","entropy"), "max_depth":[*range(1, 20)], } clf = DecisionTreeClassifier(random_state=1) GS = GridSearchCV(clf, param_grid=parameters, cv=10, scoring='f1', n_jobs=-1) GS.fit(X_train, y_train) print(GS.best_params_) print(GS.best_score_)
{'criterion': 'entropy', 'max_depth': 3, 'splitter': 'best'} 0.7638956305132776
使用最优的模型重新评估测试集效果:
test_pred = GS.best_estimator_.predict(X_test) # F1-score print("F1_score of DecisionTreeClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2)) # 绘图 plt.figure(figsize=(10, 7)) plot_confusion_matrix(GS, X_test, y_test, cmap='Blues') plt.title("DecisionTreeClassifier - Confusion Matrix", fontsize=15) plt.xticks(range(2), ["Heart Not Failed","Heart Fail"], fontsize=12) plt.yticks(range(2), ["Heart Not Failed","Heart Fail"], fontsize=12) plt.show()
使用随机森林
# RandomForestClassifier rfc = RandomForestClassifier(n_estimators=1000, random_state=1) parameters = {'max_depth': np.arange(2, 20, 1) } GS = GridSearchCV(rfc, param_grid=parameters, cv=10, scoring='f1', n_jobs=-1) GS.fit(X_train, y_train) print(GS.best_params_) print(GS.best_score_) test_pred = GS.best_estimator_.predict(X_test) # F1-score print("F1_score of RandomForestClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2))
{'max_depth': 3} 0.791157747481277 F1_score of RandomForestClassifier is : 0.53
使用Boosting
gbl = GradientBoostingClassifier(n_estimators=1000, random_state=1) parameters = {'max_depth': np.arange(2, 20, 1) } GS = GridSearchCV(gbl, param_grid=parameters, cv=10, scoring='f1', n_jobs=-1) GS.fit(X_train, y_train) print(GS.best_params_) print(GS.best_score_) # 测试集 test_pred = GS.best_estimator_.predict(X_test) # F1-score print("F1_score of GradientBoostingClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2))
{'max_depth': 3} 0.7288420428900305 F1_score of GradientBoostingClassifier is : 0.65
使用LGBMClassifier
lgb_clf = lightgbm.LGBMClassifier(boosting_type='gbdt', random_state=1) parameters = {'max_depth': np.arange(2, 20, 1) } GS = GridSearchCV(lgb_clf, param_grid=parameters, cv=10, scoring='f1', n_jobs=-1) GS.fit(X_train, y_train) print(GS.best_params_) print(GS.best_score_) # 测试集 test_pred = GS.best_estimator_.predict(X_test) # F1-score print("F1_score of LGBMClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2))
{'max_depth': 2} 0.780378102289867 F1_score of LGBMClassifier is : 0.74
以下为各模型在测试集上的表现效果对比:
LogisticRegression:0.63
DecisionTree Classifier:0.73
Random Forest Classifier: 0.53
GradientBoosting Classifier: 0.65
LGBM Classifier: 0.74
参考链接:
Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-020-1023-5#Abs1
数据分析咨询请扫描二维码
CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16在数据科学领域,探索实习机会是一个理想的学习和成长方式。实习不仅可以提供宝贵的实践经验,还能帮助学生发展关键的数据分析技 ...
2024-12-16在当今信息驱动的时代,数据分析不仅成为了企业决策的重要一环,还催生了各种职业机会。从技术到业务,数据分析专业的就业岗位种 ...
2024-12-16在现代企业中,数据分析师被誉为“数据探险家”,他们通过揭示隐藏在数据背后的故事,帮助公司优化业务策略和做出明智的决策。然 ...
2024-12-16在大数据崛起的时代,数据分析师被誉为企业的“幕后英雄”。他们通过解读数据,揭示隐藏的真相,为企业战略提供重要的指导。这份 ...
2024-12-16在这个信息大爆炸的时代,数据分析师成为了企业中的“福尔摩斯”,他们能够从庞杂的数据中提取关键洞察,为业务发展提供坚实支持 ...
2024-12-16在这个数据为王的现代社会,数据分析师如同企业的导航员,洞悉数据背后所隐藏的商业机会和战略优势。然而,成为一名优秀的数据分 ...
2024-12-16