作者:豌豆花下猫
来源:Python猫
python 支持 lambda 匿名函数,其扩展的 BNF 表示法是lambda_expr ::= "lambda" [parameter_list] ":" expression,也就是lambda 参数序列:表达式。
这是一种便捷的函数定义方式,若翻译成我们熟知的函数形式,会是这个样子:
def (parameter_list): return expression
也就是说,python 中的 lambda 函数是一种可接收多个参数的函数,返回值是一个表达式。
它最大的好处是单行简洁,不需要函数命名与换行缩进。
不得不说,匿名函数有时候是挺好用的,比如下文会介绍到的一些常见用法,它因此受到了不少人的推崇。
但是,匿名函数通常也会造成代码难以阅读,容易被人滥用,再加上 Python 只提供了对它的“残疾的”支持,所以又有一些观点不建议使用匿名函数。
事实上,Python 之父 Guido van Rossum 就属于“不推荐使用派”,他甚至曾经(2005年)想要移除 lambda,只不过最后妥协了。
lambda 这一个由其他开发者贡献进来的特性(借鉴自 lisp 语言),存在了十多年,但是却被这门语言的创造者(兼首席设计师)所嫌弃,最后竟然还奇迹般地幸存了下来,对于这个故事,大家是否觉得挺有戏剧性的?
接下来,本文就仔细聊一聊这个处境尴尬却生命力顽强的 lambda 匿名函数吧!
1、lambda 怎么使用?
lambda 函数通常的用法是结合 map()、reduce()、filter()、sorted() 等函数一起使用,这些函数的共性是:都可以接收其它函数作为参数。
例如下面的几个例子:
my_list = [3, 1, 5, 4, 10] # 元素全加1,结果:[4, 2, 6, 5, 11] list(map(lambda i:i+1, my_list)) # 过滤小于10的元素,结果:[3, 1, 5, 4] list(filter(lambda i:i<10, my_list)) # 元素累加,结果:33 from functools import reduce reduce(lambda i,j:i+j, my_list, 10) # 字典按值排序,结果:[('b', 1), ('a', 3), ('d', 4), ('c', 5)] my_dict = {'a':3, 'b':1, 'c':5, 'd':4} sorted(my_dict.items(), key=lambda item:item[1])
初学者也许会觉得代码读不懂,但是只要记住“Python中的函数是一等公民”,知道一个函数可以被作为另一个函数的参数或者返回值,就容易理解了。
比如对于 map() 函数的例子,你可以理解成这个形式:
my_func = lambda i:i+1 list(map(my_func, my_list))
甚至可以还原成普通的函数:
def add_one(i): return i+1 list(map(add_one, my_list))
map() 函数的第一个参数是一个函数,第二个参数是一个可迭代对象。这第一个参数会迭代地调用第二个参数中的元素,调用的结果以迭代器的形式返回。
这个例子使用了 list(),是为了方便一次性取出迭代器中的元素,直观地展示出来,在实际使用中,很可能会是基于迭代器的形式。
由这几种用法,我们可以总结出 lambda 函数的使用规律:
2、lambda 有什么问题?
由上面的用法可以看出,使用 lambda 函数的代码比较紧凑简洁,所以有人称它体现了“Pythonic”的优雅思想。
但是,lambda 函数有没有什么缺陷呢?
有!当前的 lambda 函数有一个最大的问题,即只支持单行表达式,无法实现丰富的功能,例如无法在函数创建时使用语句(statement),无法使用 if-else 的判断条件,也无法使用 try-except 的异常捕获机制,等等。
这极大地限制了它的能力,导致了它被人诟病为“残疾的”。
从技术实现的角度上看, 这个问题可以通过语法层面的设计来解决。
在当年的邮件组讨论中,有人提出过一些解决思路,比如这封邮件:
出处:https://mail.python.org/pipermail/python-dev/2006-February/060654.html
它提出了一个lambda args::suite 的想法,支持写成这样的形式:
ss = sorted(seq, key=(lambda x:: try: return abs(x) except TypeError: return 0))
但是,Guido 很快就否决了这个思路。
他写了一篇文章《Language Design Is Not Just Solving Puzzles》来回应:
出处:https://www.artima.com/weblogs/viewpost.jsp?thread=147358
其基本观点是:不能光顾着解决一个问题/实现某种功能,就引入缺乏“Pythonicity”的语言设计。
那么,为什么 Guido 会认为这是一种不好的设计呢?
我试着概括一下,理由是:
简而言之,他认为简洁友好的用户体验更为重要,如果简洁的语法无法满足需求,就应该写成具名函数的形式,而非设计出复杂的匿名函数。
3、为什么 Guido 想移除 lambda?
上文提到的多行 lambda 语句(multi-statement lambda)事件发生在 2006 年,我们看到了 Guido 不想给 lambda 引入复杂设计的原因。
但是,早在 2005 年,Guido 就曾经想要从 Python 移除 lambda,他对它的“嫌弃”是一个“历史悠久”的传统……
在《The fate of reduce() in Python 3000》这篇短文中,Guido 提出要一次性移除 reduce()、map()、filter() 以及 lambda。
移除 lambda 的理由如下:
回顾一下我们在前文中总结出的 lambda 的 4 条使用规律,可以发现它跟几个高阶函数(可以接收其它函数作为参数的函数)有较强的“寄生关系”,如果它们能移除了的话,lambda 确实就没有什么独立存留的意义了。
那么,为什么 Guido 觉得应该移除那几个高阶函数呢?
主要的理由有:
总体而言,Guido 的想法暗合了《The Zen of Python》中的这一条:There should be one-- and preferably only one --obvious way to do it。
但是回到现实,为了照顾某些人的习惯,以及对兼容性的考虑,Guido 最后保守地放弃了“清理异端”的计划。
因此,lambda 得以从 Python 最高独裁者的手上死里逃生。直到一年后,它试图兴风作浪(多行表达式),却惨遭镇压。
我仿佛听到了 Guido 的内心 OS:当初我想删除东西的时候,你们百般阻挠,现在你们想添加东西,哼,没门!……
哈哈,开了个玩笑。
Guido 的所有决定都体现了他的 Pythonic 设计美学、自恰的逻辑一致性以及对社区声音的权衡。
对于 lambda,我认可他的观点,而通过回溯语法发展的历史,我觉得自己对于 Python 的理解变得更为丰富了。不知道你可有同感?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30