作者:丁点helper
来源:丁点帮你
今天我们开始一个新的主题——生存分析。什么叫生存分析?为什么要采用生存分析呢?
前面我们一起学习的多重线性回归和Logistic回归都主要是用来分析某个结果的影响因素,比如教育程度对收入的影响,或者,糖尿病发生与否的影响因素,这些方法主要是在静态地分析某一个特定的结果。
可是,倘若我们不仅仅关心结果的发生情况(发病VS未发病),同时我们也想看看发生该结果所经历的时间长短,此时,简单的线性或Logistic回归就难以满足这个需求,而生存分析可以来回答这类似的问题。
生存数据
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
一般来讲,在医学科研中,生存分析较多应用在肿瘤病人的治疗方案评价方面。
这是因为对于癌症患者,我们往往更加关注的是”生存时间“,比如经常听到的:5年存活率、3年存活率... 而某种治疗方法的价值也主要表现在延长患者的存活时间。
比如在一项针对肺癌患者的研究中,研究者可能会关注下面三个问题:
1)肺癌患者接受治疗后的生存状况如何?
2)哪种疗法的效果最好?
3)这些患者在接受治疗后的生存状况与哪些因素有关?
我们可以看到,这三个问题的答案不可能简单地通过最终的治疗结果来衡量:治愈VS未治愈。
原因很简单也很残酷,癌症不像感冒那样,不是看治好还是没治好,让患者存活更多时间、存活地更体面成为人们追求的目标。
好了,回到我们的主题,如何掌握生存分析,并且灵活地运用呢?
第一步是对下面几个基本的概念有一个清晰的认识。
生存数据:前面我们说到了,在某些研究中,除了要关注某结局事件的发生与否,还会考虑发生该结局所经历的时间长短,这种兼有时间和结局两种属性的数据,就被称作生存数据。
这种将事件结局的出现与否和达到终点所经历的时间结合起来的统计方法就被称作生存分析。
由此,在进行生存分析时对”起点”、”终点“、以及”所经历的时间“(生存时间)都有十分明确的定义。专业术语一般称为:
观察起点(或称起点事件)、观察终点(终点事件)和时间间隔。
生存时间的确定
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
案例:某研究搜集了2013年1月1日至2015年12月31日间肺癌患者的资料,以了解患者接受治疗后的生存情况及其可能的影响因素。
前面谈到生存分析很关键的一点是确定生存时间,而确定生存时间最重要的是确定好观察起点和终点。
在本案例中,2013年1月1日是观察起点;2015年12月31日是观察终点,问题是并非所有人都是在起点进入观察,也并非在终点就正好发生结局(即死亡)。因此,我们需要做好相应的记录。
对于起点,观察对象可以在起点同时进入观察,也可以在不同时间点进入观察,如下A、B两种形式:
A:所有观察对象在同一时间点接受观察;
B:观察对象在不同时间点接受观察。
上图中,带点的空心圆圈表示出现终点事件,带加号的圆圈表示尚未出现终点事件。
对于终点的判断,要稍微复杂一下。
本案例的具体数据如下:
我们先不细看上面的数据,想这样一个问题:从开始观察(2013/1/1)到观察终止(2015/12/31),所有的观察对象会有哪些情况发生呢?
1)观察期内,能够正常的随访,但在观察终点前因肺癌死亡;
2)观察期内,正常随访一段时间就断了联系,后面的情况一概不清楚;
3)观察期内,能够正常随访,但在终点前因其他原因死亡的;
4)从开始观察到终止观察,一直存活的对象。
大家想想,是不是所有的观察对象都是这四种情况?是的
符合上面第一种情况的数据,我们一般称作完全数据(complete data),如上表中编号为1和3的患者,生存时间分别为23个月和13个月。
完全数据提供的是准确的生存时间。除了”完全数据“,其他的所有情况(即上面的2-4情况)所获得的数据均称作”删失数据“(censored data),有时也被称作”截尾数据“。
上表中的2号患者,属于”失访“导致的”删失“,患者可能变更联系方式、未继续就诊或拒绝访问等原因,无法继续随访,未能观察到终点事件。
另外两种”删失“情况对应上面第3)和第4)种情况:
比如表格中的编号4的患者,虽然死亡,但是死于车祸,这种”删失“称作”退出“;
5号患者在观察终点时仍然存活,这种情况称作”终止“。
一般来讲,我们会在删失数据的”生存时间“数据右上角标记”+“,表示真实的生存时间可能长于观察到的时间,但是未知。
对于生存时间单位的选择并没有特别的限制,可以是年、月、日,或小时等,一般呈现非正态分布,所以在进行生存分析时需进行特定的调整,对此,我们后续再谈。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31