
作者:丁点helper
来源:丁点帮你
今天开始学习在R语言中做描述性统计。为了便于大家边学边练,可以下载这个数据:
文件名:titanic.csv
链接:https://pan.baidu.com/s/1Pj0EsaBZdnw6mHPpeVd9Aw
密码: yuym
将本地文件导入到R中
为了便于数据管理和操作,我们通常会把数据保存为.csv格式,这是excel中的一种较为简单的数据格式。想要把一个.csv格式的数据导入R,可以用read.csv()这个函数:
# 将本地文件titanic.csv导入到R中, # 并存储到titanic这个对象中titanic <- read.csv("//Users//Desktop//titanic.csv",header = TRUE)
假设该本地文件存储的是1912年沉没于大西洋的巨型邮轮泰坦尼克号中乘客的基本信息。
上面第一个命令"//Users//Desktop//titanic.csv"是文件titanic.csv的本地存储地址,大家要根据自己电脑的存储位置自行调整;
第二个命令header = TRUE 是指将原文件中的第一行自动设置为文件的列名。
如果你的.csv文件中并无列名,而是希望在导入R之后再设置,则应将第二个命令设置为header = FALSE。
了解数据
上篇文章讲过,拿到一个数据库,首先要了解它的基本信息。之前已经讲过,我们简单复习一下。
class(titanic) #对象是什么数据结构[1] "data.frame"dim(titanic) #查看数据有几行几列[1] 1309 6names(titanic) #查看数据的列名[1] "pclass" "survived" "sex" "age" "sibsp" "parch" head(titanic) #查看前6行tail(titanic) #查看后6行
可以知道,titanic这个数据框中有1309条记录,6个变量。
这6个变量依次为舱位等级、是否幸存、性别、年龄、同行的兄弟姐妹或配偶数量、同行的父母或子女数量。
描述性统计
接下来我们来对titanic这个数据做描述性统计。
1. 每个等级的船舱中分别有多少人?
有两种方法,一是table()函数,用于统计分类变量pclass中各类别的频数;二是summary()函数,功能是做描述性统计,既适用于分类也适用于计数变量,可以用来统计分类变量的频数、计算计数变量的均数、百分位数等。
# 方法一table(titanic$pclass) 1st 2nd 3rd 323 277 709# 方法二summary(titanic$pclass) 1st 2nd 3rd 323 277 709
2. 遇难者与幸存者分别有多少人?
table(titanic$survived) died survived 809 500
3. 每个等级的舱位中分别有多少人遇难、多少人幸存?
本例中,按照『舱位等级』和『是否幸存』两个条件统计乘客状况,共6种可能。仍使用table()函数,统计每种可能的状况分别有多少人,生成交叉列联表。
# 将列联表存储在tab1中tab1 <- table(titanic$survived,titanic$pclass) # 查看tab1的内容tab1 1st 2nd 3rd died 123 158 528 survived 200 119 181
4. 每个等级的舱位中幸存者的比例是多少呢?
思路很简单,就是每等级舱位中幸存者的人数占该舱位总人数的比例。
1)那我们先看看每等级舱位中幸存者的人数怎么算,上面的tab1第二行就是,只需要将其提取出来,方法和前面讲过的如何提取数据框中的行和列相同:
#提取tab1的第二行tab1[2, ] 1st 2nd 3rd 200 119 181
2)每种舱位总人数?上面也已经计算过:
table(titanic$pclass) 1st 2nd 3rd 323 277 709
还有一种方法,使用apply()函数,功能是对矩阵类数据的行或列进行批量处理:
apply(tab1,2,sum) 1st 2nd 3rd 323 277 709
函数中有三个命令。第一个命令tab1表示待处理的数据;第二个命令2表示对tab1的每一列进行处理,若需处理每一行,则第二个命令应输入数字1;第三个命令sum表示求和。
因此,上述语句的意义为:对tab1中的每一列求和,即计算每个等级舱位中的总人数。
3)求每等级舱位中幸存者的人数占该舱位总人数的比例:
# 方法一 tab1[2, ]/table(titanic$pclass) 1st 2nd 3rd 0.6191950 0.4296029 0.2552891 # 方法二 tab1[2, ]/apply(tab1,2,sum) 1st 2nd 3rd 0.6191950 0.4296029 0.2552891
4)你一定也发现了,这个结果非常不美观,也不适合在科研工作中报告。我们做以下变化:
# 先乘以100 tab1[2, ]/apply(tab1,2,sum)*100 1st 2nd 3rd 61.91950 42.96029 25.52891 # 保留2位小数 round(tab1[2, ]/apply(tab1,2,sum)*100,2) 1st 2nd 3rd 61.92 42.96 25.53
round()函数的功能是保留小数位数。
上面的代码中,第一个命令tab1[2, ]/apply(tab1,2,sum)*100 是需要保留小数的对象;
第二个命令2是指保留2位小数。
5)可是这个结果显然不对,加上百分号%才是准确的。需要用到paste()函数,该函数的功能是把各种元素连接起来,本例中,我们希望把数字和百分号连接:
paste(round(tab1[2, ]/apply(tab1,2,sum)*100,2),"%",sep="") "61.92%" "42.96%" "25.53%"
第一个命令round(tab1[2, ]/apply(tab1,2,sum)*100,2) 就是上面计算好的百分数的数字部分,这是要连接的第一部分;
第二个命令"%" 是要连接的第二部分;
第三个命令sep="" 指两个元素之间的连接符号,这里我们不需要任何连接符号,所以引号""之间什么都不用写。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30