作者:丁点helper
来源:丁点帮你
今天开始学习在R语言中做描述性统计。为了便于大家边学边练,可以下载这个数据:
文件名:titanic.csv
链接:https://pan.baidu.com/s/1Pj0EsaBZdnw6mHPpeVd9Aw
密码: yuym
将本地文件导入到R中
为了便于数据管理和操作,我们通常会把数据保存为.csv格式,这是excel中的一种较为简单的数据格式。想要把一个.csv格式的数据导入R,可以用read.csv()这个函数:
# 将本地文件titanic.csv导入到R中, # 并存储到titanic这个对象中titanic <- read.csv("//Users//Desktop//titanic.csv",header = TRUE)
假设该本地文件存储的是1912年沉没于大西洋的巨型邮轮泰坦尼克号中乘客的基本信息。
上面第一个命令"//Users//Desktop//titanic.csv"是文件titanic.csv的本地存储地址,大家要根据自己电脑的存储位置自行调整;
第二个命令header = TRUE 是指将原文件中的第一行自动设置为文件的列名。
如果你的.csv文件中并无列名,而是希望在导入R之后再设置,则应将第二个命令设置为header = FALSE。
了解数据
上篇文章讲过,拿到一个数据库,首先要了解它的基本信息。之前已经讲过,我们简单复习一下。
class(titanic) #对象是什么数据结构[1] "data.frame"dim(titanic) #查看数据有几行几列[1] 1309 6names(titanic) #查看数据的列名[1] "pclass" "survived" "sex" "age" "sibsp" "parch" head(titanic) #查看前6行tail(titanic) #查看后6行
可以知道,titanic这个数据框中有1309条记录,6个变量。
这6个变量依次为舱位等级、是否幸存、性别、年龄、同行的兄弟姐妹或配偶数量、同行的父母或子女数量。
描述性统计
接下来我们来对titanic这个数据做描述性统计。
1. 每个等级的船舱中分别有多少人?
有两种方法,一是table()函数,用于统计分类变量pclass中各类别的频数;二是summary()函数,功能是做描述性统计,既适用于分类也适用于计数变量,可以用来统计分类变量的频数、计算计数变量的均数、百分位数等。
# 方法一table(titanic$pclass) 1st 2nd 3rd 323 277 709# 方法二summary(titanic$pclass) 1st 2nd 3rd 323 277 709
2. 遇难者与幸存者分别有多少人?
table(titanic$survived) died survived 809 500
3. 每个等级的舱位中分别有多少人遇难、多少人幸存?
本例中,按照『舱位等级』和『是否幸存』两个条件统计乘客状况,共6种可能。仍使用table()函数,统计每种可能的状况分别有多少人,生成交叉列联表。
# 将列联表存储在tab1中tab1 <- table(titanic$survived,titanic$pclass) # 查看tab1的内容tab1 1st 2nd 3rd died 123 158 528 survived 200 119 181
4. 每个等级的舱位中幸存者的比例是多少呢?
思路很简单,就是每等级舱位中幸存者的人数占该舱位总人数的比例。
1)那我们先看看每等级舱位中幸存者的人数怎么算,上面的tab1第二行就是,只需要将其提取出来,方法和前面讲过的如何提取数据框中的行和列相同:
#提取tab1的第二行tab1[2, ] 1st 2nd 3rd 200 119 181
2)每种舱位总人数?上面也已经计算过:
table(titanic$pclass) 1st 2nd 3rd 323 277 709
还有一种方法,使用apply()函数,功能是对矩阵类数据的行或列进行批量处理:
apply(tab1,2,sum) 1st 2nd 3rd 323 277 709
函数中有三个命令。第一个命令tab1表示待处理的数据;第二个命令2表示对tab1的每一列进行处理,若需处理每一行,则第二个命令应输入数字1;第三个命令sum表示求和。
因此,上述语句的意义为:对tab1中的每一列求和,即计算每个等级舱位中的总人数。
3)求每等级舱位中幸存者的人数占该舱位总人数的比例:
# 方法一 tab1[2, ]/table(titanic$pclass) 1st 2nd 3rd 0.6191950 0.4296029 0.2552891 # 方法二 tab1[2, ]/apply(tab1,2,sum) 1st 2nd 3rd 0.6191950 0.4296029 0.2552891
4)你一定也发现了,这个结果非常不美观,也不适合在科研工作中报告。我们做以下变化:
# 先乘以100 tab1[2, ]/apply(tab1,2,sum)*100 1st 2nd 3rd 61.91950 42.96029 25.52891 # 保留2位小数 round(tab1[2, ]/apply(tab1,2,sum)*100,2) 1st 2nd 3rd 61.92 42.96 25.53
round()函数的功能是保留小数位数。
上面的代码中,第一个命令tab1[2, ]/apply(tab1,2,sum)*100 是需要保留小数的对象;
第二个命令2是指保留2位小数。
5)可是这个结果显然不对,加上百分号%才是准确的。需要用到paste()函数,该函数的功能是把各种元素连接起来,本例中,我们希望把数字和百分号连接:
paste(round(tab1[2, ]/apply(tab1,2,sum)*100,2),"%",sep="") "61.92%" "42.96%" "25.53%"
第一个命令round(tab1[2, ]/apply(tab1,2,sum)*100,2) 就是上面计算好的百分数的数字部分,这是要连接的第一部分;
第二个命令"%" 是要连接的第二部分;
第三个命令sep="" 指两个元素之间的连接符号,这里我们不需要任何连接符号,所以引号""之间什么都不用写。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10