作者:接地气的陈老师
来源:接地气学堂
“到底咋样算进阶?”是很多做数据的新人同学很疑虑的问题。网上的文章铺天盖地的都是“如何入门”,“如何快速入门”一类。可真正做上数据分析以后才发现:根本学的就是个屁。每天都在跑数,真正的算法工作离自己一万多里。所以到底前途是啥?
以上诸多疑虑,症结核心,在于:网上的文章大多基于课本来写。因为书本上都是第一章讲pycharm,anaconda,第二章讲pandas,第三章讲matplotlib,第四章讲numpy,第五章讲sklearn,所以作者们想当然地以为做数据分析就是第一步安装软件,第二步取数,第三步可视化,第四步机器学习模型,第五步业务跪倒在自己脚下俯首帖耳,说:数据分析真牛逼,快来驱动我……醒醒了喂!
真正进入公司以后,就会发现,数据分析工作最大问题就是:存在感稀薄。数据驱动业务?那是:老板拿数据驱动业务。至于做数据的自己,在大部分公司就是打杂的。那些产品经理、运营、销售、策划心中,都觉得自己可懂分析了,就差一个跑数的。做数据的你就安心跑数好了。
而且,做业务的尤其喜欢说:“我看朋友圈的数据分析文章,我都会了,可我司数据分析师连大数据精准推荐,这么简单的事都搞不出来,都怪他们!”——做数据的不但工作打杂,还容易背锅。
所以,真在企业里上过班就会明白:想要摆脱窘境,真正要干的就三件事:
1、争取独立项目的机会,不当扫厕所的
2、清晰工作范围和边界,不背无妄之锅
3、展现工作效果与成绩,争取内部认可
有了这三个,才能让自己多立功,少背锅。这三点,才是从等着别人来要数的新手,向独当一面的成熟数据分析师的真正转变。具体怎么干,下边简单说一说。
1
如何争取独立项目
新人在学习阶段,都练习过网上的所谓“项目”,什么泰坦尼克、淘宝购物、某国信用卡之类。真实企业项目和这些网红项目最大区别在于:没人给你安排好做什么。如果干坐着等别人安排,就等着接电话:“这个数据老板要,下班以前要给到”。
想争取项目,陈老师之前有一篇详细的分享,在文末可见。这里想强调的是:一定要做好常规数据需求统计。想要在琐碎、零散、日常的工作中发现机会,靠的是细心的分析,而不是别人的施舍(如下图)。
基于需求统计表,能主动发现:
这样就能摆脱遇到事只会傻憨憨问业务,结果被一句“关你屁事”顶回来的尴尬。找到意愿合作的部门,找到有价值的合作项目,都靠这样一点点沉淀,而不是从天上掉下来的。
2
如何清晰工作边界
清晰工作边界就是为了不背锅,没有其他缘由。
要牢记三清原则:
1、有数据还是没数据,要分清!
2、有标准还是没标准,要分清!
3、有方案还是没方案,要分清!
没有数据,无法分析。这是废话,但是恰恰最容易被忽视。在业务眼里,永远是:“我们的数据很大呀,而且都在哪里,就差个人来分析了”,业务是不会去扣数据细节的。事先不做好功课,事后面对一堆脏数据,巧妇难为无米之炊。
没有标准,无法评估。这也是一句废话。但是业务口中,经常是:“我就是要增加销量呀;我就是要提升活跃呀;这是老板说的要做,你管他那么多呢”。看似有目标,实则不具体。这时候如果不主动提醒,事后想再补充。就变成:说业务好,自己就是应声虫,对老板没意义;说业务不好,等着被业务喷死。进退两难。
没有方案,预测不准。这也是一句废话。投100的券和投10元券转化率能一样吗。好文案和差文案转化率能一样吗。脱离业务方案去谈预测、谈走势,都是夸夸奇谈。可偏偏教预测的书本都讲的是数据处理方法,很少讲如何结合实际,因此这一步也经常被忘掉。
以上三原则,是很多新人碰得头破血流以后总结的要点,字字带血。然而这也是新人最容易忘记的点。因为在自学阶段都是对着现成的数据集,现成的背景,现成的书去练,从来没人教怎么具体问题、具体沟通。就容易在干活时出问题。
3
如何展示工作成绩
数据分析的成果,就类似“哥伦布立鸡蛋”的故事——你说出口之前,大家都觉得不可能;你说出口以后,大家都说:我早想到了!这个很简单。所以单纯地在口头报几个数、提几条建议,完全不能证明这是自己的成绩。反而把业务教聪明了,以后的分析需求越来越复杂,越来越难搞。
因此,才有数据成果三标准:
1、输出数量可量化
2、结果可重复使用
3、过程封装看不懂
具体如下图所示:
想实现这三标准,单纯地靠写ppt,做口头汇报是肯定不行的。上数据产品势在必行。但想从零散取数,直接升级到一套完整的数据产品也是不现实的——业务等不了那么久,也不会停下日常工作。因此要有产品升级的意识,逐步地向完整产品过度。
我们积累的技术能力,是在这个场合用的。在时间、数据质量允许范围内:
1、能做报表的,不用临时取数
2、能上系统的,不用手工报表
3、能上体系的,不用孤立指标
4、能上模型的,不用业务规则
5、能固化规则的,不每次跑数
6、能固化标准的,不专题分析
总之一步步升级,手工操作、临时操作、个性化操作越来越少。产品功能越来越丰富,预测精度越来越高,查询速度越来越快,定位问题方法越来越简单,我们的价值就越大。以上,是从菜鸟到中级的破局思路。啥时候算修炼成功?往简单说,就是独挡一面。
往细了说:
具体的表现是:等你在面试或者年终述职的时候,不需要傻憨憨地说:我做了好多分析。而是很清晰的讲出来自己的工作数量、输出产品、分析模型的时候,就算成功了。然而遗憾的是,很多新人注意不到这些问题。
比起在具体问题上深入讨论,他们更喜欢发牢骚,抱怨自己的公司太low,如果能进入头腾阿这种大厂,肯定是山清水秀,鸟语花香;
比起深入思考业务场景和业务流程,他们更喜欢看“底层逻辑”“核心模型”,并且孜孜不倦的在网上找《国家权威认证方法》。
比起解决问题,他们更喜欢人手一本《21天0基础精通机器学习》,认为学了这个头腾阿的某一家就会看上他了——总之,牢骚太多,细节太少,想进步,肯定很难了。
能独立面对并解决问题以后,我们能探讨一个10人部门以上的,领导级的高级数据分析师需要什么技能了。在成果上,高级的数据分析师不仅要解决问题,更得明白“要做成什么样”主动引导业务发展。
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20