作者:豌豆花下猫
来源:Python猫
在写 python 项目的时候,我们可能经常会遇到导入模块失败的错误:ImportError: No module named 'xxx'或者ModuleNotFoundError: No module named 'xxx'。
导入失败问题,通常分为两种:一种是导入自己写的模块(即以 .py 为后缀的文件),另一种是导入三方库。本文主要讨论第二种情况,今后有机会,我们再详细讨论其它的相关话题。
解决导入 Python 库失败的问题,其实关键是在运行环境中装上缺失的库(注意是否是虚拟环境),或者使用恰当的替代方案。这个问题又分为三种情况:
一、单个模块中缺失的库
在编写代码的时候,如果我们需要使用某个三方库(如 requests),但不确定实际运行的环境是否装了它,那么可以这样:
try: import requests except ImportError: import os os.system('pip install requests') import requests
这样写的效果是,如果找不到 requests 库,就先安装,再导入。在某些开源项目中,我们可能还会看到如下的写法(以 json 为例):
try: import simplejson as json except ImportError: import json
这样写的效果是,优先导入三方库 simplejson,如果找不到,那就使用内置的标准库 json。
这种写法的好处是不需要导入额外的库,但它有个缺点,即需要保证那两个库在使用上是兼容的,如果在标准库中找不到替代的库,那就不可行了。
如果真找不到兼容的标准库,也可以自己写一个模块(如 my_json.py),实现想要的东西,然后在 except 语句中导入它。
try: import simplejson as json except ImportError: import my_json as json
二、整个项目中缺失的库
以上的思路是针对开发中的项目,但是它有几个不足:1、在代码中对每个可能缺失的三方库都 pip install,并不可取;2、某个三方库无法被标准库或自己手写的库替代,该怎么办?3、已成型的项目,不允许做这些修改怎么办?
所以这里的问题是:有一个项目,想要部署到新的机器上,它涉及很多三方库,但是机器上都没有预装,该怎么办?
对于一个合规的项目,按照约定,通常它会包含一个“requirements.txt ”文件,记录了该项目的所有依赖库及其所需的版本号。这是在项目发布前,使用命令pip freeze > requirements.txt 生成的。
使用命令pip install -r requirements.txt (在该文件所在目录执行,或在命令中写全文件的路径),就能自动把所有的依赖库给装上。
但是,如果项目不合规,或者由于其它倒霉的原因,我们没有这样的文件,又该如何是好?
一个笨方法就是,把项目跑起来,等它出错,遇到一个导库失败,就手动装一个,然后再跑一遍项目,遇到导库失败就装一下,如此循环……(此处省略 1 万句脏话)……
三、自动导入任意缺失的库
有没有一种更好的可以自动导入缺失的库的方法呢?
在不修改原有的代码的情况下,在不需要“requirements.txt”文件的情况下,有没有办法自动导入所需要的库呢?当然有!先看看效果:
我们以 tornado 为例,第一步操作可看出,我们没有装过 tornado,经过第二步操作后,再次导入 tornado 时,程序会帮我们自动下载并安装好 tornado,所以不再报错。
autoinstall 是我们手写的模块,代码如下:
# 以下代码在 python 3.6.1 版本验证通过 import sys import os from importlib import import_module class AutoInstall(): _loaded = set() @classmethod def find_spec(cls, name, path, target=None): if path is None and name not in cls._loaded: cls._loaded.add(name) print("Installing", name) try: result = os.system('pip install {}'.format(name)) if result == 0: return import_module(name) except Exception as e: print("Failed", e) return None sys.meta_path.append(AutoInstall)
这段代码中使用了sys.meta_path ,我们先打印一下,看看它是个什么东西?
Python 3 的 import 机制在查找过程中,大致顺序如下:
其中要注意,sys.meta_path 在不同的 Python 版本中有所差异,比如它在 Python 2 与 Python 3 中差异很大;在较新的 Python 3 版本(3.4+)中,自定义的加载器需要实现find_spec方法,而早期的版本用的则是find_module。
以上代码是一个自定义的类库加载器 AutoInstall,可以实现自动导入三方库的目的。需要说明一下,这种方法会“劫持”所有新导入的库,破坏原有的导入方式,因此也可能出现一些奇奇怪怪的问题,敬请留意。
sys.meta_path 属于 Python 探针的一种运用。探针,即import hook,是 Python 几乎不受人关注的机制,但它可以做很多事,例如加载网络上的库、在导入模块时对模块进行修改、自动安装缺失库、上传审计信息、延迟加载等等。
限于篇幅,我们不再详细展开了。最后小结一下:
参考资料:
https://github.com/liuchang0812/slides/tree/master/pycon2015cn
http://blog.konghy.cn/2016/10/25/python-import-hook
https://docs.python.org/3/library/sys.html#sys.meta_path
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13