作者:豌豆花下猫
来源:Python猫
我之前的一篇文章,带大家揭晓了python 在给内置对象分配内存时的 5 个奇怪而有趣的小秘密。文中使用了sys.getsizeof()来计算内存,但是用这个方法计算时,可能会出现意料不到的问题。
文档中关于这个方法的介绍有两层意思:
也就是说,getsizeof() 并不是计算实际对象的字节大小,而是计算“占位对象”的大小。如果你想计算所有属性以及属性的属性的大小,getsizeof() 只会停留在第一层,这对于存在引用的对象,计算时就不准确。
例如列表 [1,2],getsizeof() 不会把列表内两个元素的实际大小算上,而只是计算了对它们的引用。举一个形象的例子,我们把列表想象成一个箱子,把它存储的对象想象成一个个球,现在箱子里有两张纸条,写上了球 1 和球 2 的地址(球不在箱子里),getsizeof() 只是把整个箱子称重(含纸条),而没有根据纸条上地址,找到两个球一起称重。
1、计算的是什么?
我们先来看看列表对象的情况:
如图所示,单独计算 a 和 b 列表的结果是 36 和 48,然后把它们作为 c 列表的子元素时,该列表的计算结果却仅仅才 36。(PS:我用的是 32 位解释器)
如果不使用引用方式,而是直接把子列表写进去,例如 “d = [[1,2],[1,2,3,4,5]]”,这样计算 d 列表的结果也还是 36,因为子列表是独立的对象,在 d 列表中存储的是它们的 id。
也就是说:getsizeof() 方法在计算列表大小时,其结果跟元素个数相关,但跟元素本身的大小无关。
下面再看看字典的例子:
明显可以看出,三个字典实际占用的全部内存不可能相等,但是 getsizeof() 方法给出的结果却相同,这意味着它只关心键的数量,而不关心实际的键值对是什么内容,情况跟列表相似。
2、“浅计算”与其它问题
有个概念叫“浅拷贝”,指的是 copy() 方法只拷贝引用对象的内存地址,而非实际的引用对象。类比于这个概念,我们可以认为 getsizeof() 是一种“浅计算”。
“浅计算”不关心真实的对象,所以其计算结果只是一个假象。这是一个值得注意的问题,但是注意到这点还不够,我们还可以发散地思考如下的问题:
关于第一个问题,getsizeof(x) 方法实际会调用 x 对象的__sizeof__() 魔术方法,对于内置对象来说,这个方法是通过 CPython 解释器实现的。
我查到这篇文章《Python中对象的内存使用(一)》,它分析了 CPython 源码,最终定位到的核心代码是这一段:
我看不懂这段代码,但是可以知道的是,它在计算 Python 对象的大小时,只跟该对象的结构体的属性相关,而没有进一步作“深度计算”。
对于 CPython 的这种实现,我们可以注意到两个层面上的区别:
由此,我有一个不成熟的猜测:基于“一切皆是对象”的设计原则,int 及其它基础的 C 数据类型在 Python 中被套上了一层“壳”,所以需要一个方法来计算它们的大小,也即是 getsizeof()。
官方文档中说“All built-in objects will return correct results” [1],指的应该是数字、字符串和布尔值之类的简单对象。但是不包括列表、元组和字典等在内部存在引用关系的类型。
为什么不推广到所有内置类型上呢?我未查到这方面的解释,若有知情的同学,烦请告知。
3、“深计算”与其它问题
与“浅计算”相对应,我们可以定义出一种“深计算”。对于前面的两个例子,“深计算”应该遍历每个内部元素以及可能的子元素,累加计算它们的字节,最后算出总的内存大小。
那么,我们应该注意的问题有:
Stackoverflow 网站上有个年代久远的问题“How do I determine the size of an object in Python?” [2],实际上问的就是如何实现“深计算”的问题。
有不同的开发者贡献了两个项目:pympler 和 pysize :第一个项目已发布在 Pypi 上,可以“pip install pympler”安装;第二个项目烂尾了,作者也没发布到 Pypi 上(注:Pypi 上已有个 pysize 库,是用来做格式转化的,不要混淆),但是可以在 Github 上获取到其源码。
对于前面的两个例子,我们可以拿这两个项目分别测试一下:
单看数值的话,pympler 似乎确实比 getsizeof() 合理多了。再看看 pysize,直接看测试结果是(获取其源码过程略):
可以看出,它比 pympler 计算的结果略小。就两个项目的完整度、使用量与社区贡献者规模来看,pympler 的结果似乎更为可信。
那么,它们分别是怎么实现的呢?那微小的差异是怎么导致的?从它们的实现方案中,我们可以学习到什么呢?
pysize 项目很简单,只有一个核心方法:
除去判断__dict__和 __slots__属性的部分(针对类对象),它主要是对字典类型及可迭代对象(除字符串、bytes、bytearray)作递归的计算,逻辑并不复杂。
以 [1,2] 这个列表为例,它先用 sys.getsizeof() 算出 36 字节,再计算内部的两个元素得 14*2=28 字节,最后相加得到 64 字节。
相比之下,pympler 所考虑的内容要多很多,入口在这:
它可以接受多个参数,再用 sum() 方法合并。所以核心的计算方法其实是 _sizer()。但代码很复杂,绕来绕去像一座迷宫:
它的核心逻辑是把每个对象的 size 分为两部分:flat size 和 item size。计算 flat size 的逻辑在:
这里出现的 mask 是为了作字节对齐,默认值是 7,该计算公式表示按 8 个字节对齐。对于 [1,2] 列表,会算出 (36+7)&~7=40 字节。同理,对于单个的 item,比如列表中的数字 1,sys.getsizeof(1) 等于 14,而 pympler 会算成对齐的数值 16,所以汇总起来是 40+16+16=72 字节。这就解释了为什么 pympler 算的结果比 pysize 大。
字节对齐一般由具体的编译器实现,而且不同的编译器还会有不同的策略,理论上 Python 不应关心这么底层的细节,内置的 getsizeof() 方法就没有考虑字节对齐。
在不考虑其它 edge cases 的情况下,可以认为 pympler 是在 getsizeof() 的基础上,既考虑了遍历取引用对象的 size,又考虑到了实际存储时的字节对齐问题,所以它会显得更加贴近现实。
4、小结
getsizeof() 方法的问题是显而易见的,我创造了一个“浅计算”概念给它。这个概念借鉴自 copy() 方法的“浅拷贝”,同时对应于 deepcopy() “深拷贝”,我们还能推理出一个“深计算”。
前面展示了两个试图实现“深计算”的项目(pysize+pympler),两者在浅计算的基础上,深入地求解引用对象的大小。pympler 项目的完整度较高,代码中有很多细节上的设计,比如字节对齐。
Python 官方团队当然也知道 getsizeof() 方法的局限性,他们甚至在文档中加了一个链接 [3],指向了一份实现深计算的示例代码。那份代码比 pysize 还要简单(没有考虑类对象的情况)。
未来 Python 中是否会出现深计算的方法,假设命名为 getdeepsizeof() 呢?这不得而知了。
本文的目的是加深对 getsizeof() 方法的理解,区分浅计算与深计算,分析两个深计算项目的实现思路,指出几个值得注意的问题。
读完这里,希望你也能有所收获。若有什么想法,欢迎一起交流。
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31