作者:豌豆花下猫
来源:Python猫
我之前的一篇文章,带大家揭晓了python 在给内置对象分配内存时的 5 个奇怪而有趣的小秘密。文中使用了sys.getsizeof()来计算内存,但是用这个方法计算时,可能会出现意料不到的问题。
文档中关于这个方法的介绍有两层意思:
也就是说,getsizeof() 并不是计算实际对象的字节大小,而是计算“占位对象”的大小。如果你想计算所有属性以及属性的属性的大小,getsizeof() 只会停留在第一层,这对于存在引用的对象,计算时就不准确。
例如列表 [1,2],getsizeof() 不会把列表内两个元素的实际大小算上,而只是计算了对它们的引用。举一个形象的例子,我们把列表想象成一个箱子,把它存储的对象想象成一个个球,现在箱子里有两张纸条,写上了球 1 和球 2 的地址(球不在箱子里),getsizeof() 只是把整个箱子称重(含纸条),而没有根据纸条上地址,找到两个球一起称重。
1、计算的是什么?
我们先来看看列表对象的情况:
如图所示,单独计算 a 和 b 列表的结果是 36 和 48,然后把它们作为 c 列表的子元素时,该列表的计算结果却仅仅才 36。(PS:我用的是 32 位解释器)
如果不使用引用方式,而是直接把子列表写进去,例如 “d = [[1,2],[1,2,3,4,5]]”,这样计算 d 列表的结果也还是 36,因为子列表是独立的对象,在 d 列表中存储的是它们的 id。
也就是说:getsizeof() 方法在计算列表大小时,其结果跟元素个数相关,但跟元素本身的大小无关。
下面再看看字典的例子:
明显可以看出,三个字典实际占用的全部内存不可能相等,但是 getsizeof() 方法给出的结果却相同,这意味着它只关心键的数量,而不关心实际的键值对是什么内容,情况跟列表相似。
2、“浅计算”与其它问题
有个概念叫“浅拷贝”,指的是 copy() 方法只拷贝引用对象的内存地址,而非实际的引用对象。类比于这个概念,我们可以认为 getsizeof() 是一种“浅计算”。
“浅计算”不关心真实的对象,所以其计算结果只是一个假象。这是一个值得注意的问题,但是注意到这点还不够,我们还可以发散地思考如下的问题:
关于第一个问题,getsizeof(x) 方法实际会调用 x 对象的__sizeof__() 魔术方法,对于内置对象来说,这个方法是通过 CPython 解释器实现的。
我查到这篇文章《Python中对象的内存使用(一)》,它分析了 CPython 源码,最终定位到的核心代码是这一段:
我看不懂这段代码,但是可以知道的是,它在计算 Python 对象的大小时,只跟该对象的结构体的属性相关,而没有进一步作“深度计算”。
对于 CPython 的这种实现,我们可以注意到两个层面上的区别:
由此,我有一个不成熟的猜测:基于“一切皆是对象”的设计原则,int 及其它基础的 C 数据类型在 Python 中被套上了一层“壳”,所以需要一个方法来计算它们的大小,也即是 getsizeof()。
官方文档中说“All built-in objects will return correct results” [1],指的应该是数字、字符串和布尔值之类的简单对象。但是不包括列表、元组和字典等在内部存在引用关系的类型。
为什么不推广到所有内置类型上呢?我未查到这方面的解释,若有知情的同学,烦请告知。
3、“深计算”与其它问题
与“浅计算”相对应,我们可以定义出一种“深计算”。对于前面的两个例子,“深计算”应该遍历每个内部元素以及可能的子元素,累加计算它们的字节,最后算出总的内存大小。
那么,我们应该注意的问题有:
Stackoverflow 网站上有个年代久远的问题“How do I determine the size of an object in Python?” [2],实际上问的就是如何实现“深计算”的问题。
有不同的开发者贡献了两个项目:pympler 和 pysize :第一个项目已发布在 Pypi 上,可以“pip install pympler”安装;第二个项目烂尾了,作者也没发布到 Pypi 上(注:Pypi 上已有个 pysize 库,是用来做格式转化的,不要混淆),但是可以在 Github 上获取到其源码。
对于前面的两个例子,我们可以拿这两个项目分别测试一下:
单看数值的话,pympler 似乎确实比 getsizeof() 合理多了。再看看 pysize,直接看测试结果是(获取其源码过程略):
可以看出,它比 pympler 计算的结果略小。就两个项目的完整度、使用量与社区贡献者规模来看,pympler 的结果似乎更为可信。
那么,它们分别是怎么实现的呢?那微小的差异是怎么导致的?从它们的实现方案中,我们可以学习到什么呢?
pysize 项目很简单,只有一个核心方法:
除去判断__dict__和 __slots__属性的部分(针对类对象),它主要是对字典类型及可迭代对象(除字符串、bytes、bytearray)作递归的计算,逻辑并不复杂。
以 [1,2] 这个列表为例,它先用 sys.getsizeof() 算出 36 字节,再计算内部的两个元素得 14*2=28 字节,最后相加得到 64 字节。
相比之下,pympler 所考虑的内容要多很多,入口在这:
它可以接受多个参数,再用 sum() 方法合并。所以核心的计算方法其实是 _sizer()。但代码很复杂,绕来绕去像一座迷宫:
它的核心逻辑是把每个对象的 size 分为两部分:flat size 和 item size。计算 flat size 的逻辑在:
这里出现的 mask 是为了作字节对齐,默认值是 7,该计算公式表示按 8 个字节对齐。对于 [1,2] 列表,会算出 (36+7)&~7=40 字节。同理,对于单个的 item,比如列表中的数字 1,sys.getsizeof(1) 等于 14,而 pympler 会算成对齐的数值 16,所以汇总起来是 40+16+16=72 字节。这就解释了为什么 pympler 算的结果比 pysize 大。
字节对齐一般由具体的编译器实现,而且不同的编译器还会有不同的策略,理论上 Python 不应关心这么底层的细节,内置的 getsizeof() 方法就没有考虑字节对齐。
在不考虑其它 edge cases 的情况下,可以认为 pympler 是在 getsizeof() 的基础上,既考虑了遍历取引用对象的 size,又考虑到了实际存储时的字节对齐问题,所以它会显得更加贴近现实。
4、小结
getsizeof() 方法的问题是显而易见的,我创造了一个“浅计算”概念给它。这个概念借鉴自 copy() 方法的“浅拷贝”,同时对应于 deepcopy() “深拷贝”,我们还能推理出一个“深计算”。
前面展示了两个试图实现“深计算”的项目(pysize+pympler),两者在浅计算的基础上,深入地求解引用对象的大小。pympler 项目的完整度较高,代码中有很多细节上的设计,比如字节对齐。
Python 官方团队当然也知道 getsizeof() 方法的局限性,他们甚至在文档中加了一个链接 [3],指向了一份实现深计算的示例代码。那份代码比 pysize 还要简单(没有考虑类对象的情况)。
未来 Python 中是否会出现深计算的方法,假设命名为 getdeepsizeof() 呢?这不得而知了。
本文的目的是加深对 getsizeof() 方法的理解,区分浅计算与深计算,分析两个深计算项目的实现思路,指出几个值得注意的问题。
读完这里,希望你也能有所收获。若有什么想法,欢迎一起交流。
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13