作者:豌豆花下猫
来源:Python猫
花下猫语:最近我发现了一个《Python behind the scenes》系列文章,它计划深度地剖析python 幕后的 CPython 解释器的工作原理。作者专门建了一个网站来发布该系列文章,目前已发布 4 篇。这些文章都挺长的,想要翻译好,并不容易。而本文接下来的内容,是该作者分享的一篇简短的参考材料,我先翻译出来热热身~~
原文:https://tenthousandmeters.com/materials/python-behind-the-scenes-a-list-of-resources
作者:Victor Skvortsov
译者:豌豆花下猫(“Python猫”公众号作者)
声明:本翻译是出于交流学习的目的,基于 CC BY-NC-SA 4.0 授权协议。为便于阅读,内容略有改动。
在研究 CPython 以及写作《CPython behind the scenes》系列时,我发现了一些很有用的文档、帖子和演讲。它们确实是一些非常好的资源,但是并不能回答我的太多问题。这就是为什么我最终决定要分享自己在学习 CPython 源代码时的经验。
>> Python 文档。在所有与 Python 相关的主题上,Python 文档几乎都是第一的查阅选择。虽然它缺少涵盖解释器原理的特殊内容,但是 Python/C API 文档描述了 CPython 的公共接口和一些实现细节。它附录了一份《the tutorial for C programmers》,该教程展示了如何使用 C 语言来扩展 Python 程序,或者将 Python 嵌入到 C 应用程序中。我敢打赌,只要认真地完成这些阅读内容,你就会对 CPython 的工作原理相当地了解。
>> PEP。虽然没有哪个 PEP 描述了解释器的总体设计,但是对 Python 的大多数主要更改,都有相应的提案。PEP 很赞。它们提供了技术和历史的背景。文档的作者们习惯于适当地引用相关的 PEP。例如,Python/C API 的参考内容中至少提到了一次 PEP-432,描述了 CPython 新的初始化序列的转变,以及 PEP-587(这是其部分的实现)。
>> Obi Ike-Nwosu 写的《 Inside The Python Virtual Machine》一书。在我看来,它是关于 CPython 内部原理的最全面、最准确的资料。
>> Anthony Shaw 写的《Your Guide to the CPython Source Code》。这个标题不言而喻。如果想直接研究源代码,你应该选择它!
>> Philip Guo 写的《CPython internals: A ten-hour codewalk through the Python interpreter source code》。如果你想要更为简单的介绍,那么这些讲座视频可能是最好的开始。它们基于 CPython 2.7,但是原理保持不变。
>> Yaniv Aknin 写的《Python’s Innards series》,介绍的是 CPython 3 VM 的早期版本,但仍然非常有用。
>> Eli Bendersky 写的《Python internals》文章。关于符号表(symbol table)的帖子特别好。
>> Stupid Python Ideas 博客。有各种 Python 相关主题的文章。有些涉及 CPython 内部原理。强烈推荐,但可能不好检索。
>> Allison Kaptur 写的《A Python Interpreter Written in Python》。它介绍了一个玩具版 Python VM,能够执行真正的 Python 字节码。这作为解释器的入门介绍,可能会很有用。但是,我觉得不必要花大量时间研究一个玩具示例,因为 CPython 本身并没有那么复杂。
>> Eric Snow 的演讲《To GIL or not to GIL》。它的主题是子解释过程。我喜欢它的地方是 Eric 在开头描述 CPython 架构的方式。
参考材料:
1、Python behind the scenes (https://tenthousandmeters.com/)
2、the tutorial for C programmers (https://docs.python.org/3.9/extending/index.html#extending-index)
3、Inside The Python Virtual Machine (https://leanpub.com/insidethepythonvirtualmachine)
4、Your Guide to the CPython Source Code (https://realpython.com/cpython-source-code-guide/)
5、CPython internals: A ten-hour codewalk through the Python interpreter source code (https://www.youtube.com/playlist?list=PLzV58Zm8FuBL6OAv1Yu6AwXZrnsFbbR0S)
6、Python’s Innards series (https://tech.blog.aknin.name/category/my-projects/pythons-innards/)
7、Python internals (https://eli.thegreenplace.net/tag/python-internals)
8、Stupid Python Ideas (http://stupidpythonideas.blogspot.com/)
9、A Python Interpreter Written in Python (http://aosabook.org/en/500L/a-python-interpreter-written-in-python.html)
10、To GIL or not to GIL (https://www.youtube.com/watch?v=7RlqbHCCVyc)
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20