作者:豌豆花下猫
来源:Python猫
花下猫语:前两天,我偶然在一个知识星球(刘欣老师的“码农翻身”)里看到一篇主题,刘老师表示 python 的类方法非要带个 self,而不像其它语言那样隐藏起来,这让人很不爽。我对此也有同感。在经过群聊讨论后,我获知 Guido 曾经专门撰文解释过这个问题。这篇文章并不好懂,我抽空先翻译出来了,看看能收到什么回应。如果可能的话,后续再另写文章分析。
布鲁斯·埃克尔(Bruce Eckel)发了篇博文[1],提议从类方法的形参列表中删除“self”。我将解释为什么这个提议不能通过。(译注:Bruce 是《Thinking in Java》、《Thinking in C++》等多本书籍的作者,也是个 Python 开发者。他的文章总结了当年在巴西 Pycon 上的一次讨论,主要观点是在定义类方法时,形参中的“self”是多余的,而且由它引发的报错信息具有一定的误导性。)
Bruce 的提议
Bruce 知道,我们需要一种方法来区分对实例变量的引用和对其它变量的引用,因此他建议将“self”设为关键字。
考虑一种典型的类,它有一个方法,例如:
class C: def meth(self, arg): self.val = arg return self.val
跟据Bruce 的提议,这将变为:
class C: def meth(arg): # Look ma, no self! self.val = arg return self.val
这样每个方法会节省 6 个字符。但我不觉得 Bruce 提出这个建议是为了减少打字。
我认为他真正关心的是程序员(可能来自其它语言)所浪费的时间,有时候似乎不需要指定“self”参数,而且他们偶尔忘记了要加(即使他们十分清楚——习惯是一种强大的力量)。确实,与忘记在实例变量或方法引用之前键入“self.”相比,从参数列表中省略“self”,往往会导致很模糊的错误消息。
也许更糟糕的是(如 Bruce 所述),当正确地声明了方法,但是在调用时的参数数量不对,这时收到的错误消息。如 Bruce 给出的以下示例:
Traceback (most recent call last): File "classes.py", line 9, in obj.m2(1) TypeError: m2() takes exactly 3 arguments (2 given)
我赞同它是令人困惑的,但是我宁愿去解决此错误消息,而不是修改语言。
为什么 Bruce 的提议不可行
首先,让我提出一些与 Bruce 的提议相反的典型论点。
这有一个很好的论据可以证明,在参数列表中使用显式的“self”,可以增强以下两种调用方法在理论上的等效性。假设“ foo”是“C”的一个实例:
foo.meth(arg) == C.meth(foo, arg)
(译注:说实话,我没有理解这个例子的意思。以下仅是个人看法。在类的内部定义方法时,可能会产生几种不同的方法:实例方法、类方法和 静态方法。它们的作用和行为是不同的,那么在定义和调用时怎么做区分呢?Python 约定了一种方式,即在定义时用第一个参数作区分:self 表示实例方法、cls或其它符号 表示类方法……三种方法都可以被类的实例调用,而且看起来一模一样,如上例的等号左侧那样。这时候就要靠定义时赋予的参数来区分了,像上例等号右侧,第一个参数是实例对象,表明此处是个实例方法。)
另一个论据是,在参数列表中使用显式的“self”,将一个函数插入一个类,获得动态地修改一个类的能力,创建出相应的一个类方法。
例如,我们可以创建一个与上面的“C”完全等效的类,如下所示:
# Define an empty class: class C: pass # Define a global function: def meth(myself, arg): myself.val = arg return myself.val # Poke the method into the class: C.meth = meth
请注意,我将“self”参数重命名为“myself”,以强调(在语法上)我们不是在此处定义一个方法(译注:类外部的是函数,即 function,类内部的是方法,即 method)。
这样之后,C 的实例就具有了一个“meth”方法,该方法有一个参数,且功能跟之前的完全一样。对于在把方法插入类之前就创建的那些 C 的实例,它甚至也适用。
我想 Bruce 并不特别在意前述的等效性。我同意这只是理论上的重要。我能想到的唯一例外是旧式的调用超级方法的习语(idiom)。但是,这个习语很容易出错(正是由于需要显式地传递"self"的原因),这就是为什么在 Python 3000中,我建议在所有情况下都使用"super()"的原因。
Bruce 可能会想到一种使第二个等效例子起作用的方法——在某些情况下,这种等效性真的很重要。我不知道 Bruce 花了多少时间思考如何实现他的提议,但是我想他正在考虑将一个名为“self”的额外形参自动地添加到直接地在类内部定义的所有方法的思路(我必须说是“直接地”,以便那些嵌套在方法内部的函数,能免于这种自动操作)。这样,可以使第一个等效例子保持等效。
但是,有一种情况我认为 Bruce 不能在不向编译器中添加某种 ESP 的情况下解决:装饰器。我相信这是 Bruce 的提议的最终败笔。
当装饰一个方法时,我们不知道是否要自动地给它加一个“self”参数:装饰器可以将函数变成一个静态方法(没有“self”)或一个类方法(有一个有趣的 self,它指向一个类而不是一个实例),或者可以做一些完全不同的事情(用纯 Python 实现“ @classmethod”或“ @staticmethod”的装饰器是繁琐的)。除非知道装饰器的用途,否则没有其它办法来确定是否要赋予正在定义的方法一个隐式的“self”参数。
我拒绝诸如特殊包装的“@classmethod”和“@staticmethod”之类的黑科技。我也认为除了自检外,自动地确定某个方法是类方法(class method)、实例方法(instance method)还是静态方法(static method),这不是一个好主意(就像在 Bruce 的文章的评论中,有人建议的那样):这使得很难仅仅根据方法前的“def”,来决定应该怎样调用该方法。
(译注:对于一个方法,在当前的添加了相应参数的情况下,可以简单地加装饰器,区分它是哪种方法,调用时也容易区分调用;但是,如果没有加参数,即使可以用神奇的自动机制来区分出它是哪种方法,但在调用时,你不好确定该怎么调用)。
在评论中,我看到了一些非常极端的对 Bruce 的提议的附和,但通常的代价是使得规则难以遵循,或者要求对语言进行更深层的修改,这令我们极其难以接受它,特别是合入 Python 3.1。顺便说一句,对于 3.1,再次声明我们的规则,新特性只有在保持向后兼容的情况下才是可接受的。
有一个似乎可行的建议(可以使它向后兼容)是把类中的
def foo(self, arg): ...
改成这样的语法糖:
def self.foo(arg): ...
但我不认同它把“self”变为保留字(reserved word),或者要求前缀必须是“self”。如果这样做了,那对于类方法,很容易也出现这种情况:
@classmethod def cls.foo(arg): ...
好了,相比于现状,我并没有更喜欢这个。但是相比于 Bruce 的提议或在他的博客评论区中提出的更极端的说法,我认为这个要好得多,而且它具有向后兼容的巨大优势,并且不需要很费力,就可以写成带有参考实现的 PEP。(我想 Bruce 应该会发现自己提案中的缺陷,如果他真的付出努力尝试编写可靠的 PEP 或者尝试实现它。)
我可以继续聊很多,但这是一个阳光明媚的周日早晨,而我还有其它的计划... :-)
作者:Guido van Rossum,写于:2008.10.26
参考资料
[1] Bruce博文:http://www.artima.com/weblogs/viewpost.jsp?thread=239003
[2] Guido原文: https://neopythonic.blogspot.com/2008/10/why-explicit-self-has-to-stay.html
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20