CDA数据分析师 出品
作者:真达、Mika
数据:真达
【导读】
2020年年初,突然袭来的新冠疫情给我们的生活带来了巨大的改变,与此同时也让许多国际体育赛事停摆。3月24日,东京奥组委宣告,2020东京夏季奥运会延期至2021年夏季举行。
随着国内疫情逐渐得到有效控制,我们的生活已步入正轨,但全球的疫情形势还很严峻。8月份以来,日本的第二波疫情来势汹汹,单日新增确诊人数不断刷新历史新高,11月18日单日新增确诊人数已达到2201人。
这也使得原本延迟一年的2020东京奥运会,再次笼罩上了一层不确定性。人们不禁在想,已经要延期一年的东京奥运会还能顺利举办吗?
那么关于奥运会这场世界上影响力最大的体育盛会,背后有哪些有趣的数据。
奥运会参赛国数量和比赛项目有哪些变化?
各国累计奖牌数排名是怎样的?
参赛运动员的年龄和身高有哪些特征?
今天我们就带你用数据来好好盘一盘。
奥林匹克运动会发源于两千多年前的古希腊,因举办地在奥林匹亚而得名。并于1896年举办了首届奥运会,1924年举办了首届冬奥会,是世界上影响力最大的体育盛会。
01数据理解
我们选取了一个关于现代奥运会的历史数据集,包括从1896年雅典奥运会到2016年里约奥运会的所有奥运会。
数据集取自网站:www.sports-reference.com
需要注意的是,冬季奥运会和夏季奥运会从1994年起分开,每两年间隔举行,1992年冬季奥运会是最后一届与夏季奥运会同年举行的冬奥会。自1924年开始第1届,截至2018年共举办了23届,每四年一届。
athlete_events.csv 文件包含271116行和15列。每一行对应于在一个单独的奥运会项目(运动员项目)中参赛的运动员。列为:
02读入数据
首先导入包和数据。
# 导入库 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import plotly as py import plotly.graph_objs as go import plotly.express as px import plotly.figure_factory as ff from plotly.subplots import make_subplots pyplot = py.offline.plot
# 读入数据 df_athlete = pd.read_csv('./archive/athlete_events.csv') df_regions = pd.read_csv('./archive/noc_regions.csv') df_athlete.head()
df_athlete.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 271116 entries, 0 to 271115 Data columns (total 15 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 ID 271116 non-null int64 1 Name 271116 non-null object 2 Sex 271116 non-null object 3 Age 261642 non-null float64 4 Height 210945 non-null float64 5 Weight 208241 non-null float64 6 Team 271116 non-null object 7 NOC 271116 non-null object 8 Games 271116 non-null object 9 Year 271116 non-null int64 10 Season 271116 non-null object 11 City 271116 non-null object 12 Sport 271116 non-null object 13 Event 271116 non-null object 14 Medal 39783 non-null object dtypes: float64(3), int64(2), object(10) memory usage: 31.0+ MB
df_regions.head()
03数据预处理
此处对数据做以下处理,以方便后续的分析:
# 合并数据 df_all = pd.merge(df_athlete, df_regions, how='left', on='NOC') # 处理Sex列 df_all['Sex'] = df_all['Sex'].map({'M': 'Male', 'F': 'Female'}) # 处理Medal列 df_all['Medal'].fillna('No Medal', inplace=True) df_all.head()
04数据可视化
我们使用处理好的数据做数据可视化分析,结果如下:
1奥运会总体数据
参赛国家数量变化
整体上来看,参赛国家呈现上升趋势,但其中有两届奥运会存在异常的下降。分别是:
1976年蒙特利尔奥运会:出现了规模空前的反种族歧视行动,此次运动会遭到了非洲国家的抵制,规模远逊于上届。
1980年莫斯科奥运会:为了表示对苏联入侵阿富汗的谴责和愤怒,美国带头拒绝参加1980年的莫斯科奥运会,并号召其他国家一起抵制。在美国的号召下,最终一共有65个国家抵制莫斯科奥运会,占当时报名参赛国数量的五分之二。最后只有80个国家参加莫斯科奥运会, 大约5000余人参赛,参赛人数还没有参与报道的记者数量多,创历史记录。
比赛项目数量变化
可以看出,奥运会的比赛项目呈现波浪式上升的趋势,其中在1980-2000年这20年,比赛项目增长趋势最大,且以夏季奥运会尤为突出,但2000年以后比赛项目增加趋势慢慢变为平稳的态势了。
各个国家累计奖牌数量TOP 20
我们选取了各个项目获得奖牌数目排名前20的国家,通过比较发现美国不管是金牌、银牌还是铜牌都领先很多,然后是俄罗斯和德国。由于缺席了多届奥运会,我国的累计奖牌数排名偏后。
2奥运会参赛运动员数据
每届参赛人数
从图中可以观察到,夏季奥运会参赛最多人数的是2000年的悉尼奥运会,参赛人数13821人,冬季奥运会参赛人数最多的是2014年,参赛人数4891人。
参加夏季奥运会的人数远远多于冬季的人数,可能是比赛项目少的原因。同时,第一次世界大战和第二次世界大战期间没有举办过奥运会。
参赛运动员男女人数和比例变化
(男女人数变化)
(男女比例变化)
我们纵观整个奥运历史,虽然奥运会的开始,运动员男女比例较为悬殊,男性运动员占比一直高于女性运动员。但是我们可以看到,随着奥运会的发展,女性运动员的占比一直在提升,目前参加奥运会男女比例几乎接近于1:1。
参赛运动员年龄和奖牌数
图中可以看出,年龄的分布呈现右偏分布,其中80%的区域集中在19岁到33岁之间,25岁左右是运动员的黄金年龄。
纵观整个奥运史,年龄最小的运动员仅为10岁。1896年,第一届现代奥运会在希腊举办,仅仅10岁零218天的东道主体操选手Dimitrios Loundras参赛并获得了铜牌,
1928年阿姆斯特丹夏季奥运会中,一名97岁高龄的美国“运动员”,参加了雕刻的“运动项目”,但并未获得名次。这个记录应该是不会被打破了。
参赛运动员的身高、体重分布
(身高变化)
(体重变化)
我们筛选了1960年之后的数据,发现参赛选手中男性身高分布在127cm-226cm之间,女性身高分布在127cm-213cm之间,男性体重的分布在37kg-226kg之间,女性的体重分布在25kg-167kg之间。
结语
由于新冠疫情的影响,日本东京奥运会成为了现代奥林匹克运动史上首届被推迟的奥运会。而这次延期带来的影响无疑是巨大的,据多家日本媒体报道,东京奥运会推迟举行造成的直接经济损失约为60亿美元。赛事场馆和酒店的支出、人力成本等各项额外开支,都会让东道主接下来的筹办捉襟见肘。总之,还是期待明年的全球疫情能够有所好转吧...
参考资料:
http://rstudio-pubs-static.s3.amazonaws.com/510365_4989159dfb754097843f17b9606aabfe.html
维基百科 奥林匹克运动会
https://zh.wikipedia.org/wiki/%E5%A5%A5%E6%9E%97%E5%8C%B9%E5%85%8B%E8%BF%90%E5%8A%A8%E4%BC%9A
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16