公众号:接地气学堂
作者:接地气的陈老师
总是听人说:数据分析师要懂业务,懂业务。懂业务确实很重要,可到底要懂到啥程度?很少有认真讨论的。更难搞的是,不管你懂多少,总会有人冒出来说你:“不懂业务呀”到底这事啥时候是个头?今天我们系统讲解一下。
之所以有“业务”的说法,是和“技术”相对的。传统的说法里,业务泛指非技术类所有工作,是企业销售、营销、风控、运营工作的笼统称呼,这些都是直面B端/C端用户,为企业挣钱的活。技术,则对应着财务、IT、法务、人力、研发等支撑性专业,这些不直面客户,在背后支持业务运作。
在咨询公司、第三方数据公司、广告公司等等少数卖数据的公司里,数据是作为产品直接销售给客户的,数据地位更贴近业务。在其他大部分企业里,数据就是支撑部门,因此要懂业务、服务业务。
要懂业务,本质上是因为:数据从业务中来,要用回业务里去。
从业务中来,有三层含义:
1、数据产生于业务流程。
l 有了门店、销售队伍,才有线下成交数据
l 建了微商城、APP,才有线上成交数据
l 搞了微商城、APP埋点,才有互动数据
业务流程如何做,分几步做,做得能不能记录,决定了有啥数据可以分析。
2、业务动作会改变数据。
l 为了赶时间上线,不埋点,就没有互动数据
l 为了提高注册转化率,不收集基础信息,用户画像就缺一堆字段
l 销售自己搞了会员卡,客人不主动提就扫到自己卡上,数据就不真实
业务怎么做,直接关系到数据质量和数量
3、数据结果会影响业务动作。
l 销售业绩不达标,业务猛冲一波,月底业绩就大涨
l 销售业绩已达标,业务藏一波单,月底业绩就平着走
l 活跃人数不够,业务直接买流量,砸活动,数据刷的呱呱好看
因为很多企业建立了数据考核制度,因此当KPI/OKR不达标的时候,业务部门就开始各种骚操作,这些骚操作又会反向影响数据结果。
因此,如果不了解业务情况,只是就数论数的话,就很难做出有深度的分析。了解业务情况,就能读出数字背后的含义(如下图)
业务不是虚幻的“商业模式”“底层逻辑”“核心思维”,更不是简单的AARRR、人货场几个字。业务是具体的系统流程、工作方式、数据记录。不去抠业务细节,就不知道数据从哪里来,受什么影响,会变成什么样,自然无法分析。
想系统化梳理业务,可以以一个具体业务流程为目标,进行梳理(如下图):
注意,不同部门,不同等级的工作,对应的业务流程是不一样的,因此想梳理的话,就得一个部门一个部门的过,分层级理解(如下图)。
除非直接卖数据(或者卖基于数据的广告类产品),否则数据是无法直接变现的。想要变现,就得结合业务动作。这就得考虑:到底现在业务需要的是什么?
l 如果业务不了解现状,就给现状描述
l 如果业务不会下判断,就给标准建议
l 如果业务不清晰趋势,就给未来预测
l 如果业务不知道原因,就给原因分析
l 如果业务分不清主次,就给综合评估
总之,具体到一个公司的一个部门的一个岗位,具体到他到底在想什么问题,才能知道到底要输出什么结论。针对性越强,输出得越准确。
如果业务不知道怎么干……你得首先看,他到底有多不知道,才能对症下药(如下图)。
所以,如果不懂业务,给出的数据结论针对性不高,就必然面对灵魂三问:
注意:业务不是一成不变的,具体到销售、营销、运营、生产、风控等具体领域以后,你会发现虽然每个领域有一些经典理论,但具体的做法却是日新月异。互联网的不断创新,还在贡献更多新玩法。因此:在业务问题上,没有懂王!掌握理解业务的方法才是关键。
对于3年经验以内的新人:
了解一个具体领域的具体业务流程的具体做法。这对于培养认真细致的钻研精神,至关重要。特别是了解数据采集方式与数据质量,这对于后续如何开展分析、选择建模方法,有关键影响。
对于3年-6年经验的中生代:
对一个具体行业(比如游戏、短视频、社区、电商、O2O……)常见玩法有了解,对一个具体细分领域(销售、营销、运营、生产、风控……)有比较深入的钻研。这些经验积累,是以后举一反三,理解更多新模式,新玩法的基础。
对于6+以上老人:
能举一反三,梳理一个新业务的逻辑;
有良好的沟通能力,能主动发起和业务的沟通,了解情况;
有独立的判断能力,能听出来业务嘴里的真假,反推动机。
到这个阶段,能熟练运用自己的能力,梳理业务情况,甚至能凭借经验主动指导业务了。
但是有一些做法,会阻碍进步哦,同学们注意避雷:
1、沉迷于“底层逻辑”“核心思维”“能力觉醒”
2、不看实际工作细节,总想找《电商行业百科全书全国统一认证版》
3、不看业务流程里数据采集点,张口“AARRR”闭口“用户画像”“精准”
4、只会从一张大宽表里拖数,数据咋来的,一问三不知
5、见过一个行业内成功案例,就认为全世界都该这么做
6、当懂王:“业务无非就是发优惠券”“互联网无非就是补贴”……
7、不可知论:“什么业务不业务,就是看老板心情……”
总之,具体问题,具体讨论,不在理论层面浅尝辄止,也不沉迷于具体某一次成功经验,才能让自己理解能力越来越强,主动梳理能力越来越高。看到这,可能有同学会想看具体例子,有兴趣的话,本篇集齐60留言,下一篇我们分享一个业务梳理的案例,敬请期待哦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30