公众号:丁点帮你
作者:丁点helper
最近的生存分析系列文章都是介绍生存曲线的估计方法的,其中一篇讲了如何通过每一例患者的生存时间绘制生存曲线、估计生存率,这种方法被称为K-M法,是因为该方法最早是由Kaplan和Meier这两个人提出的;另一篇讲了如何理解生存率的95%置信区间。
回顾一下前面讲过的例子:为了解肺癌患者接受某种治疗后的生存状况,研究者收集了12名肺癌患者治疗后的住院资料。我们将12名观察对象的生存时间由小到大依次排列,可以计算每个时间点的生存概率,进而计算每个时间点的生存率。
然而在实际工作中,经常会遇到样本含量较大的随访资料,例如大型的队列研究。研究人员只会在计划好的时间点对所有研究对象进行随访(例如每年一次),而不会与每个研究对象持续保持联系,准确记录结局发生/删失发生的具体时间。
因此,某些个体的结局/删失发生在两次随访之间,研究者就不能获得其确切的生存时间,只能确定生存时间的区间。在这种情况下,可将原始资料按照生存时间分组再进行分析。
下面我们用一个例子来看看这种方法是如何实现的。
案例:为了解尘肺患者的生存期,回顾性调查了某煤矿确诊为尘肺的患者1166人,其生存时间列于下表。
与K-M法相比,这一方法中的生存时间由一个确切时间变为了一个时间区间(上表中的『确诊年数 ti』这一列)。
这种变化类似于制作频数分布表的过程,上表是对1166名患者的生存时间做了一个频数分布表,比如第一行中的数据就表示,确诊为尘肺后,寿命少于2年的有51人。教科书中把这样整理数据并估计生存率的方法叫做寿命表法。
接下来我们来一步步搞懂上面这张表。
第(1)~(4)列
在背景中讲过,本案例中患者确切的生存时间无从知晓,只能知道在哪个区间。所以要想把1166名患者的生存时间整合起来,就需要按照生存时间的区间来整理,也就是统计每个区间的人数。
你可能会问,为什么上表是以2年为一个区间呢?其实这个区间的宽度是根据随访时间和观察例数来确定的,可根据实际情况合理调整。
一般每个区间为半闭半开区间,最后一个区间终点在无穷大。本例分成了22个时间区间。
在确定分组区间之后,就要统计每个区间内的死亡人数di、删失人数ci以及期初观察人数ni。第一个时间区间的期初观察人数是所有的观察例数;下一个区间的期初观察例数按以下公式计算:
,这和之前讲过的K-M法是一样的。
第(5)~(7)列
在计算某一时间区间内的死亡概率时,需要用该区间内的死亡人数除以该区间内的观察人数,即
。但是当区间内存在删失时,这些个体并未观察至区间的终点,因此这里用期初观察人数做分母不太妥当。只有当删失数为0时,区间内有效观察人数才等于ni。
在一个特定时间区间内,我们假定删失个体发生的时间是均匀分布的,有的在区间刚开始就删失了,有的则在区间快要结束时才删失。把这些删失个体看做一个整体,相当于一半的个体在区间开始时删失,而另一半则存活到了区间结束。因此,可以认为区间内的有效观察人数为:
也被称为期初校正人数。
接下来每一个时间区间的死亡概率和生存概率也就很好计算了:
比如第三个区间(
),66名患者死亡,死亡概率就是:66/1069.5;对应的生存概率就是:1 - 66/1069.5。
上面的计算中,分母是1069.5,这个数值是怎么来的?计算过程如下:
第(8)~(9)列
接下来的一列就是生存分析中最关心的『生存率
』这一指标了。和之前讲过的一样,各时间点的生存率就是各区间生存概率的乘积。
......注意各时间区间对应的生存率应是该区间上限时间点的生存率,例如上表中第5个区间 [8, 10)对应的生存率为0.7565,意思是某患者确诊为尘肺后预测其活过10年的生存率为75.65%,而不是活过8年的生存率。
最后,再说说为什么要出现表中最后一列『生存率的标准误
』。我们这个表中每个区间的生存率都是用样本计算出来的,要想通过样本了解总体的情况,或者说想估计总体生存率的95%置信区间,就需要用到
。具体解释和计算方法在前文中有详细介绍。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10