
公众号:丁点帮你
作者:丁点helper
最近的生存分析系列文章都是介绍生存曲线的估计方法的,其中一篇讲了如何通过每一例患者的生存时间绘制生存曲线、估计生存率,这种方法被称为K-M法,是因为该方法最早是由Kaplan和Meier这两个人提出的;另一篇讲了如何理解生存率的95%置信区间。
回顾一下前面讲过的例子:为了解肺癌患者接受某种治疗后的生存状况,研究者收集了12名肺癌患者治疗后的住院资料。我们将12名观察对象的生存时间由小到大依次排列,可以计算每个时间点的生存概率,进而计算每个时间点的生存率。
然而在实际工作中,经常会遇到样本含量较大的随访资料,例如大型的队列研究。研究人员只会在计划好的时间点对所有研究对象进行随访(例如每年一次),而不会与每个研究对象持续保持联系,准确记录结局发生/删失发生的具体时间。
因此,某些个体的结局/删失发生在两次随访之间,研究者就不能获得其确切的生存时间,只能确定生存时间的区间。在这种情况下,可将原始资料按照生存时间分组再进行分析。
下面我们用一个例子来看看这种方法是如何实现的。
案例:为了解尘肺患者的生存期,回顾性调查了某煤矿确诊为尘肺的患者1166人,其生存时间列于下表。
与K-M法相比,这一方法中的生存时间由一个确切时间变为了一个时间区间(上表中的『确诊年数 ti』这一列)。
这种变化类似于制作频数分布表的过程,上表是对1166名患者的生存时间做了一个频数分布表,比如第一行中的数据就表示,确诊为尘肺后,寿命少于2年的有51人。教科书中把这样整理数据并估计生存率的方法叫做寿命表法。
接下来我们来一步步搞懂上面这张表。
第(1)~(4)列
在背景中讲过,本案例中患者确切的生存时间无从知晓,只能知道在哪个区间。所以要想把1166名患者的生存时间整合起来,就需要按照生存时间的区间来整理,也就是统计每个区间的人数。
你可能会问,为什么上表是以2年为一个区间呢?其实这个区间的宽度是根据随访时间和观察例数来确定的,可根据实际情况合理调整。
一般每个区间为半闭半开区间,最后一个区间终点在无穷大。本例分成了22个时间区间。
在确定分组区间之后,就要统计每个区间内的死亡人数di、删失人数ci以及期初观察人数ni。第一个时间区间的期初观察人数是所有的观察例数;下一个区间的期初观察例数按以下公式计算:
,这和之前讲过的K-M法是一样的。
第(5)~(7)列
在计算某一时间区间内的死亡概率时,需要用该区间内的死亡人数除以该区间内的观察人数,即
。但是当区间内存在删失时,这些个体并未观察至区间的终点,因此这里用期初观察人数做分母不太妥当。只有当删失数为0时,区间内有效观察人数才等于ni。
在一个特定时间区间内,我们假定删失个体发生的时间是均匀分布的,有的在区间刚开始就删失了,有的则在区间快要结束时才删失。把这些删失个体看做一个整体,相当于一半的个体在区间开始时删失,而另一半则存活到了区间结束。因此,可以认为区间内的有效观察人数为:
也被称为期初校正人数。
接下来每一个时间区间的死亡概率和生存概率也就很好计算了:
比如第三个区间(
),66名患者死亡,死亡概率就是:66/1069.5;对应的生存概率就是:1 - 66/1069.5。
上面的计算中,分母是1069.5,这个数值是怎么来的?计算过程如下:
第(8)~(9)列
接下来的一列就是生存分析中最关心的『生存率
』这一指标了。和之前讲过的一样,各时间点的生存率就是各区间生存概率的乘积。
......注意各时间区间对应的生存率应是该区间上限时间点的生存率,例如上表中第5个区间 [8, 10)对应的生存率为0.7565,意思是某患者确诊为尘肺后预测其活过10年的生存率为75.65%,而不是活过8年的生存率。
最后,再说说为什么要出现表中最后一列『生存率的标准误
』。我们这个表中每个区间的生存率都是用样本计算出来的,要想通过样本了解总体的情况,或者说想估计总体生存率的95%置信区间,就需要用到
。具体解释和计算方法在前文中有详细介绍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28