公众号:丁点帮你
作者:丁点helper
最近的生存分析系列文章都是介绍生存曲线的估计方法的,其中一篇讲了如何通过每一例患者的生存时间绘制生存曲线、估计生存率,这种方法被称为K-M法,是因为该方法最早是由Kaplan和Meier这两个人提出的;另一篇讲了如何理解生存率的95%置信区间。
回顾一下前面讲过的例子:为了解肺癌患者接受某种治疗后的生存状况,研究者收集了12名肺癌患者治疗后的住院资料。我们将12名观察对象的生存时间由小到大依次排列,可以计算每个时间点的生存概率,进而计算每个时间点的生存率。
然而在实际工作中,经常会遇到样本含量较大的随访资料,例如大型的队列研究。研究人员只会在计划好的时间点对所有研究对象进行随访(例如每年一次),而不会与每个研究对象持续保持联系,准确记录结局发生/删失发生的具体时间。
因此,某些个体的结局/删失发生在两次随访之间,研究者就不能获得其确切的生存时间,只能确定生存时间的区间。在这种情况下,可将原始资料按照生存时间分组再进行分析。
下面我们用一个例子来看看这种方法是如何实现的。
案例:为了解尘肺患者的生存期,回顾性调查了某煤矿确诊为尘肺的患者1166人,其生存时间列于下表。
与K-M法相比,这一方法中的生存时间由一个确切时间变为了一个时间区间(上表中的『确诊年数 ti』这一列)。
这种变化类似于制作频数分布表的过程,上表是对1166名患者的生存时间做了一个频数分布表,比如第一行中的数据就表示,确诊为尘肺后,寿命少于2年的有51人。教科书中把这样整理数据并估计生存率的方法叫做寿命表法。
接下来我们来一步步搞懂上面这张表。
第(1)~(4)列
在背景中讲过,本案例中患者确切的生存时间无从知晓,只能知道在哪个区间。所以要想把1166名患者的生存时间整合起来,就需要按照生存时间的区间来整理,也就是统计每个区间的人数。
你可能会问,为什么上表是以2年为一个区间呢?其实这个区间的宽度是根据随访时间和观察例数来确定的,可根据实际情况合理调整。
一般每个区间为半闭半开区间,最后一个区间终点在无穷大。本例分成了22个时间区间。
在确定分组区间之后,就要统计每个区间内的死亡人数di、删失人数ci以及期初观察人数ni。第一个时间区间的期初观察人数是所有的观察例数;下一个区间的期初观察例数按以下公式计算:
,这和之前讲过的K-M法是一样的。
第(5)~(7)列
在计算某一时间区间内的死亡概率时,需要用该区间内的死亡人数除以该区间内的观察人数,即
。但是当区间内存在删失时,这些个体并未观察至区间的终点,因此这里用期初观察人数做分母不太妥当。只有当删失数为0时,区间内有效观察人数才等于ni。
在一个特定时间区间内,我们假定删失个体发生的时间是均匀分布的,有的在区间刚开始就删失了,有的则在区间快要结束时才删失。把这些删失个体看做一个整体,相当于一半的个体在区间开始时删失,而另一半则存活到了区间结束。因此,可以认为区间内的有效观察人数为:
也被称为期初校正人数。
接下来每一个时间区间的死亡概率和生存概率也就很好计算了:
比如第三个区间(
),66名患者死亡,死亡概率就是:66/1069.5;对应的生存概率就是:1 - 66/1069.5。
上面的计算中,分母是1069.5,这个数值是怎么来的?计算过程如下:
第(8)~(9)列
接下来的一列就是生存分析中最关心的『生存率
』这一指标了。和之前讲过的一样,各时间点的生存率就是各区间生存概率的乘积。
......注意各时间区间对应的生存率应是该区间上限时间点的生存率,例如上表中第5个区间 [8, 10)对应的生存率为0.7565,意思是某患者确诊为尘肺后预测其活过10年的生存率为75.65%,而不是活过8年的生存率。
最后,再说说为什么要出现表中最后一列『生存率的标准误
』。我们这个表中每个区间的生存率都是用样本计算出来的,要想通过样本了解总体的情况,或者说想估计总体生存率的95%置信区间,就需要用到
。具体解释和计算方法在前文中有详细介绍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30