
来源:麦叔编程
作者:麦叔
练武的人都知道:练武不练功,到老一场空!
说的是只练花架子,不练习内功,最终也都是一个菜鸟级武师。
学习编程何尝不是!我时常见到已经学习相当一段时间的程序员,连稍微深点的基本知识都没有掌握。可叹,可悲啊!根子不牢,注定走不远啊!
基于实例学习编程非常重要,也非常有效,但与此同时,我们也必须不断的加强基本功的学习,刻意的加强相关的技术。掌握技术脉络,加强各项技术,跳出编程语言本身,练好内功,才能爬的又快又好,成为一个高级的爬虫工程师!
本文从爬虫的技术原理出发,讨论了Python爬虫工程师必须掌握和不断加强的几项技术。
除此之外,网站会有各种反爬取技术,爬虫工程师和网站开发工程一个攻,一个守,斗智斗勇。
另外,爬虫10个网页和爬取10000个网站是不同的概念,你需要维护要爬取的数以万计的URL,设置更新频率,去掉不需要的URL等等,查看各个网站的爬取状态等,这就是一个工程化的问题。商业级的爬虫涉及到很多工程化问题。
就像家庭作坊可以就在自己院子里,一家人就能生产出少量的产品。但要大量生成就需要厂房,财务,人事等企业框架和管理制度、
下面列举了爬虫工程师需要不断掌握和精进的基本功技术:
HTTP协议是爬虫和网页交流的语言,如果不懂这个语言,你肯定不能成为一个有效的爬虫工程师。你也不需要成为一个协议专家,主要掌握请求,相应,header,cookie等就可以了。
我们看到的网页基本都是HTML的格式,我们要从HTML的脚本中找出所需要的信息,就必须掌握HTML的格式。
同样的一个HTML页面,我们可以展现不同的样式。我们通过CSS来指定样式,比如指定表格用什么背景颜色,文字用什么字体等。
这些样式,本来不是爬虫工程师在意的事情,因为我们只在意数据。但是通过CSS,我们可以有效的定位到某些数据,所以CSS还是需要学习的,后面的数据解析部分会再次提到CSS。
HTML是完全静态的网页,为了在网页上实现动态效果,就有了JavaScript。很多网页上的数据并没有直接在HTML中给出,而是通过JavaScript后续又加载出来的。
实际上,JavaScript是编程语言排行榜上很靠前的编程语言,所谓的前端开发者需要精通JavaScript,而爬虫工程师了解基本的知识,知道Ajax请求的相关原理,有时候还要知道如何用JavaScript加密,就差不多了。
JSON是JavaScript Object Notation的意思,可以理解成一种数据结构。一般的数据API都是以JSON格式的:
我们需要用某种技术,从HTML中找出我们想要的数据,xpath是其中一种。简单说,就是通过路径来找到想要的数据:
通过指定样式,我们也可以定位到指定的数据,再解析数据:
因为喜欢Jquery的原因,我个人更喜欢CSS选择器。
前两种数据解析都是基于结构的解析方式,而正则表达式(re)就把HTML当成一个文本,不在意其中的结构,用字符串的规则解析数据:
CSV是用逗号隔开的一种纯文本的数据格式,是数据分析和处理中最常用的格式。CSV可以用记事本打开,也可以用Excel打开。
把数据存储在CSV等文本中很方便,但是数据的查询和处理不方便,为了解决这个问题,我们可以会把数据保存在数据库中。
这是很广阔的领域,数据库是计算机技术中最重要分分支之一。值得你不断地学习和精进。相比前面的HTML等,你只要几个小时就可以学会了,后面也不怎么需要更新知识。
关于反爬技术,请看我另外一篇文章:
搞疯爬虫程序员的8个难点!!
在Python的世界里,工程化最常用的就是Scrapy框架,它使用组件化的方式分解了爬虫所需要处理的事情,让你可以集中在最关键的地方,剩下的管理工作交给框架来完成。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09