来源:丁点帮你
作者:丁点helper
什么叫经济增长?最简单的理解就是,一个经济体,通常是一个国家,生产出来越来越多的产品(包括服务)为人所用。
所以为了方便起见,我们就不说产品和服务,而是统称为“产出”,一般用字母
表示。
因此,单单用数据来看,经济增长就是指经济中的产出量越来越大,同时,因为这些产出最终都被人消耗掉了,所以也可以理解为经济中被使用的产品和服务越来越多。
前者是从“供给”的角度在描述,后者是从"需求“的角度来说。所以,研究经济增长,实际上可以从供给和需求两个角度分别切入:
从供给侧来看经济的生产能力是如何扩大的;从需求侧来看经济人的需求是如何得到越来越多的满足的。
从供给面来分析经济增长,核心问题是:经济中的产出为什么会越来越多?
要解答这个问题,我们需要引入一个数量分析的框架——生产函数(production function)。
这里我们先不从数学的角度来关心这个函数具体长什么样子,而是把它看做一个整体,或者说一个”魔盒“。
可以说,正是这个盒子将我们经济活动中投入的生产要素与产出联系起来了。
我们都知道,谈到函数,首先想两个问题:自变量和因变量。
对于这里的生产函数,因变量就是"产出",用Y表示;自变量就是K和L,分别代表了资本(如厂房、机器、设备等)和劳动力两大类。
用数学公式来表示就是:
Y即产出(可以理解为GDP),K表示资本存量,L表示劳动力投入,
就是所谓的”生产函数“。
这是最简单的生产函数的形式,很好理解。
比如,我们要生产面包,当然需要面包机(资本K),还需要面包工人(劳动力L),只有将两者有机地整合在一起,才可能生产出面包(产出Y)。
除了资本和劳动力之外,还有一种要素会影响面包的产出,即技术的进步,一般用A表示。
注意:这里的技术并非仅是大家一般以为的科学技术,它实际还包括管理水平等”软实力“,是一个十分宽泛的概念。
引入技术之后,生产函数可变为:
在这种生产函数下,A被称作全要素生产率(total factor productivity,简称TFP)。
这里的”全“字意味着,技术的进步会同时提升资本和劳动力的产出效率。
虽然我们现在没有具体的分析生产函数的具体形式,但有一个性质是我们必须要谈的:生产要素的边际产量递减(diminishing marginal product)。
前面说了,资本和劳动力是最常见的两种生产要素,所以生产要素的边际产量递减,就意味着劳动的边际产量递减、资本的边际产量也递减。
边际产量英文为:Marginal Production;
进而劳动的边际产量就表示为:Marginal Production of Labor, 简写为 MPL;
资本的边际产量即为 Marginal Production of Capital, MPK。
用简单的数学式子表示就是:
这里一连出了好几个”边际“,估计同学们都搞晕了。
什么叫边际?其实我们可以直接理解为”新增“:劳动的边际产量就是:新增的劳动力带来的新增的产出。
比如,新开的面包店,雇用第一名工人时,他每天可以生产20块面包;此时再雇用第二名工人(新增的劳动力),就会带来面包总数的增加,比如现在一共可以生产35块面包。
35是总数,可是因为新雇用的第二名工人带来的面包产量的增加是多少呢?
就是35-20=15;也就是说,新增一名工人带来的新增的面包是15,这就是第二名工人的边际产量。
对比第一个工人,当只有他一个人的时候,他能制作的面包是20块,即20就是第一个工人的边际产量。
很明显,15小于20,意味着雇用的第二名工人的边际产量小于第一名工人。这就是所谓的劳动力边际产量递减的规律。
刚开始接触经济学时可能会觉得这个不可思议,这里往往是跟规模效应弄混了。
实际上,边际产量递减是经济学中少有的所谓的”铁律“,即几乎不管在什么情况下都会成立的规律。
我们可以尝试从反面解释一下,即如果边际产量递增会怎样?
边际产量递增意味着你每次多雇用一名工人,他所带来的面包的产量(也就是他的边际产量)会增加,也就是说比他上一名工人生产的还多,
这意味着,只要我们不断的雇用工人,面包就会越来越多。
这显然是不符合实际的!
因为如果边际产量递增,那我们只需无止境地雇用劳动,就可以生产出越来越多的产品,而不需要做任何其他的改善。
可是现实是,一个工厂所能容纳的工人一定是有限的,超出了这个限度,产量不会增加,甚至会下降。
这里我们引入这个规律后就会明白,虽然每种要素投入越多,产出就越多,但随着要素的增加,新增所带来的产出的增量其实是越来越少的。
如果用数学的语言来描述可能会更直接和准确:
因为Y是K和L的函数,所以我们可以把Y对K和L求导:
求导出来,一阶导是正的,意味着随着K或者L的增加,Y增加;但是其二阶导就是负的,即新增带来的新增是下降的。
用图形来表示:
上述这条曲线表示,当资本量不变的情况下(
),产出如何取决于劳动投入,即劳动的边际产量(MPL)。随着劳动量的增加,生产函数变得更加平坦,表明劳动边际产量递减。
当然,资本有这样一致的规律。
以上就是从供给面分析经济需要掌握的两个入门的内容,后续的分析就需要在此基础上进行,这便是我们下一期文章的内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30