来源:早起Python
作者:陈熹、刘早起
大家好,又到了Python办公自动化(偷懒)专题。
今天介绍的案例是如何利用Python来自动化移动、修改、重命名文件/夹,这样的操作在日常办公中经常会用到,若能掌握用Python实现将会大大提高效率!
所以我希望能够通过这篇文章来让大家了解:如何基于 os glob 和 shutil 对文件管理的综合运用!
为了让本文介绍的案例更有通用型,我新建了一个文件夹 files1 存放着 1800+ 个文件,如下所示:
需要完成的内容如下
“
将 1835 个文件移动到新文件夹 file2,并且重命名文件,名字开头加上 序号 和 “终稿” 两个字,如名字更改为 “1-终稿-xxxxx(原文件名)”
”
你心里可能想着:这是人做的事??? 但确实这是真实的需求,文件批量重命名非常常见,如果没有一些技巧,那么只能耗费大量的时间和人力去做。这里的技巧,就是 Python
另外还有一个问题:要先移动再重命名还是先重命名再移动呢? 继续往下看!
真实的办公场景并不会这样的需求,毕竟谁想要无端给自己的电脑产生大量无用文件呢(也不要给别人的电脑乱用)
不得不提,生成随机文件能够帮助我们更好的测试自己 Python 文件管理的技能。如果你没有合适的文件夹和文件夹供自己练习,那么为什么不自己写个代码产生呢?
当然,在这个过程中我们也会学习一些知识点,先看代码:
import random import string for i in range(2000):
random_str = ''.join(random.sample(string.ascii_letters + string.digits, random.randint(1, 11)))
file = open(r"C:\xxx\file1" + random_str + ".txt", 'w+') # 前面路径是产生文件的目标文件夹
file.write(''.join(random.sample(string.ascii_letters + string.digits, random.randint(1, 11))))
file.close()
通过 string 就可以获得所有的字母和数字,利用 random.sample() 常规接受两个参数,一个是抽样的范围,一个是抽样的次数,默认是放回抽样。这样就可以在给定的字母数字范围内随机抽取 1-10 个,但是返回的结果注意是列表,需要再用 .join 方法完成字符串拼接
用随机产生的名字生成文件后,再在其内部用类似的方法随机写入一些内容:
上面的写法不够优雅,因为需要配套使用 file.close() 释放,更好的方法是直接利用上下文管理器 with 结构,减少出错的几率
import random import string for i in range(2000):
random_str = ''.join(random.sample(string.ascii_letters + string.digits, random.randint(1, 11)))
with open(r"C:\xxx\file1" + random_str + ".txt", 'w+') as file:
file.write(''.join(random.sample(string.ascii_letters + string.digits, random.randint(1, 11))))
因为即使是随机产生名字,但抽样的范围和次数不大决定了 2000 次抽样会有一些抽签组合成的名字完全一样,后面形成的文件会覆盖之前产生的文件,最终导致产生的文件没有 2000 个。
需要用到内置库 os 的 os.rename() 方法
import os os.rename('practice.txt', 'practice_rename.txt') # 重命名文件 os.rename('文件夹1', '文件夹2') # 重命名文件夹
虽然需求中有重命名文件的需求,但实际上并不需要直接借助这个方法
需要用到内置库 shutil 的 shutil.move 方法
import shutil
shutil.move(r'.practice.txt', r'.文件夹1/')
shutil.move(r'.practice.txt', r'.文件夹1/new.txt')
注意到上面后两行代码的区别吗?前一行是将目标文件移动到目标文件夹里,而后一行,在将目标文件移动到目标文件夹里的同时,能够对其进行重命名
也就是说,我们并不需要用 os.rename 先命名文件再用 shutil.move 将其移动的指定文件夹,而是可以用 shutil.move 一步到位。
采用基于 glob 库的迭代框架:
import glob
path = xxx for file in glob.glob(f'{path}/**/*.xlsx', recursive=True):
pass
上面的代码能够获取给定路径内部所有文件夹下的 Excel 文件(.xlsx 格式), recursive 参数默认为 False,当为 True 时允许逐级遍历
而本例需要获取给定文件夹下的所有 .txt 文件,则更加简单:
import glob
path = xxx for file in glob.glob(f'{path}/*.txt'):
pass
在上面一节我们已经把需求拆分为多个小块并理清了思路,现在可以开始写代码了。首先导入需要的库
import os import shutil import glob
path = r"C:xxx" # 存放大量需更名移动文件的文件夹路径的上一级路径
上文提到,不需要利用 os.rename 那为什么要导入 os 库呢?
一方面因为要通过这个库产生新的文件夹。也可以手动完成,但交给代码多了判断也不容易出错:
if not os.path.exists(path + r'file2'):
os.mkdir(path + r'file2')
另一方面下文还会用它获取文件名,然后就可以移动更名一步到位,glob 迭代文件框架遍历获取文件绝对路径:
count = 1 # 生成序号 for file in glob.glob(f'{path}\测试\*.txt'):
# 这里是文件绝对路径,可以用字符串方法直接替换修改,但为了方便理解我还是用路径拼接 filename = os.path.basename(file)
shutil.move(file, path + r'file2' + f'{count}-终稿-{filename}')
count += 1
看到没,Python、3秒、搞定、干饭!
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20