来源:早起Python
作者:读者投稿
最近几年,比特币一直站在风口浪尖,一度被追捧为最佳的投资产品,拥护者认为这种加密货币是一种类似于黄金的储值工具,可以对冲通胀和美元疲软。其他人则认为,比特币的暴涨只是一个经济刺激措施催生的巨大泡沫,并且必将破裂。
比特币数据很多网站都有,并且也有很多成熟的API,所以取数据非常简单,直接调用API接口即可,下面是获取与写入数据的全部代码
import requests import json import csv import time time_stamp = int(time.time()) url = f"https://web-api.coinmarketcap.com/v1/cryptocurrency/ohlcv/historical?convert=USD&slug
=bitcoin&time_end={time_stamp}&time_start=1367107200"
rd = requests.get(url = url) # 返回的数据是 JSON 格式,使用 json 模块解析 co =
json.loads(rd.content)
list1 = co['data']['quotes']
with open('BTC.csv','w' ,encoding='utf8',newline='') as f:
csvi = csv.writer(f)
csv_head = ["date","price","volume"]
csvi.writerow(csv_head)
for i in list1:
quote_date = i["time_open"][:10]
quote_price = "{:.2f}".format(i["quote"]["USD"]["close"])
quote_volume = "{:.2f}".format(i["quote"]["USD"]["volume"])
csvi.writerow([quote_date, quote_price, quote_volume])
执行后,当前目录就会生成BTC.csv数据文件
首先导入需要的包及相关设定
import pandas as pd import matplotlib as mpl from matplotlib import cm import numpy
as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker import
matplotlib.animation as animation from IPython.display import HTML from datetime import datetime
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.rc('axes',axisbelow=True)
mpl.rcParams['animation.embed_limit'] = 2**128
其中两句plt.rcParams[]是用来设置显示中文的
plt.rc('axes',axisbelow=True)的作用是设置外观要求,即坐标轴置底。
mpl.rcParams['animation.embed_limit'] = 2**128这句是为了生成动画而用的,由于动画默认的最大体积为20971520.字节。如果需要调整生成的动画最大体积,需要更改这个参数。
接下来数据并利用查看前5行与后5行
从表格初窥可以得知,13年初的价格在100美元左右,而到如今21年价格已经飞涨到5万左右了。具体在哪段时间飞涨如此之快呢,我们通过动态面积可视化来探索。
可视化之前,需要对数据进行处理,由于我们原本的数据是这样的
是csv格式,且Date字段是字符串类型,而在Python中运用matplotlib画时间序列图都需要datetime时间戳格式才美观,所以我们运用了如下代码进行转换
df = pd.read_csv('BTC.csv')
df['date']=[datetime.strptime(d, '%Y/%m/%d').date() for d in df['date']]
下面制作静态面积图,使用单色填充的话,可用如下代码
Span=180 N_Span=0 df_temp=df.loc[N_Span*Span:(N_Span+1)*Span,:]
df_temp.head(5)
fig =plt.figure(figsize=(6,4), dpi=100)
plt.subplots_adjust(top=1,bottom=0,left=0,right=0.9,hspace=0,wspace=0)
plt.fill_between(df_temp.date.values, y1=df_temp.price.values, y2=0,alpha=0.75, facecolor='r',
linewidth=1,edgecolor ='none',zorder=1)
plt.plot(df_temp.date, df_temp.price, color='k',zorder=2)
plt.scatter(df_temp.date.values[-1], df_temp.price.values[-1], color='white',s=150,edgecolor ='k',
linewidth=2,zorder=3)
plt.text(df_temp.date.values[-1], df_temp.price.values[-1]*1.18,s=np.round(df_temp.price.values[-1],1),
size=10,ha='center', va='top')
plt.ylim(0, df_temp.price.max()*1.68)
plt.xticks(ticks=df_temp.date.values[0:Span+1:30],labels=df_temp.date.values[0:Span+1:30],rotation=0)
plt.margins(x=0.01)
ax = plt.gca()#获取边框 ax.spines['top'].set_color('none') # 设置上‘脊梁’为无色
ax.spines['right'].set_color('none') # 设置上‘脊梁’为无色 ax.spines['left'].set_color('none')
# 设置上‘脊梁’为无色 plt.grid(axis="y",c=(217/256,217/256,217/256),linewidth=1)
#设置网格线 plt.show()
其中Span设定的是多少天的价格,这里我们使用200天。N_Span代表权重;
df_temp=df.loc[N_Span*Span:(N_Span+1)*Span,:]代表的是选择到179行为止的数据,即180天。
plt.fill_between()是使用单色--红色填充
得到如下效果
但是一个颜色填充总感觉不够好看,所以下面使用渐变色填充,使用plt.bar()函数实现Spectral_r颜色映射。代码如下:
Span_Date =180
Num_Date =360 #终止日期 df_temp=df.loc[Num_Date-Span_Date: Num_Date,:]
#选择从Num_Date-Span_Date开始到Num_Date的180天的数据 colors =
cm.Spectral_r(df_temp.price / float(max(df_temp.price)))
fig =plt.figure(figsize=(6,4), dpi=100)
plt.subplots_adjust(top=1,bottom=0,left=0,right=0.9,hspace=0,wspace=0)
plt.bar(df_temp.date.values,df_temp.price.values,color=colors,width=1,align="center",zorder=1)
plt.plot(df_temp.date, df_temp.price, color='k',zorder=2)
plt.scatter(df_temp.date.values[-1], df_temp.price.values[-1], color='white',s=150,edgecolor ='k',linewidth=2,zorder=3)
plt.text(df_temp.date.values[-1], df_temp.price.values[-1]*1.18,s=np.round(df_temp.price.values[-1],1),
size=10,ha='center', va='top')
plt.ylim(0, df_temp.price.max()*1.68)
plt.xticks(ticks=df_temp.date.values[0: Span_Date +1:30],labels=df_temp.date.values[0: Span_Date +1:30],rotation=0)
plt.margins(x=0.01)
ax = plt.gca()#获取边框 ax.spines['top'].set_color('none') # 设置上‘脊梁’为无色 ax.spines['right'].set_color('none')
# 设置上‘脊梁’为无色 ax.spines['left'].set_color('none') # 设置上‘脊梁’为无色 plt.grid(axis="y",
c=(217/256,217/256,217/256),linewidth=1) #设置网格线 plt.show()
这里的数据筛选有稍许不同,其中Span_Date设置初始时间,这里设置为180即从起始日开始算的180天.
Num_Date设置的是终止时间。
df_temp=df.loc[Num_Date-Span_Date: Num_Date,:]则是用loc函数筛选从180天到终止日期的数据。
效果如下:
最后,我们来将这幅图动起来,先将刚刚的绘图部分封装
def draw_areachart(Num_Date):
Span_Date=180
ax.clear()
if Num_Date<Span_Date: df_temp=df.loc[0:Num_Date,:] df_span=df.loc[0:Span_Date,:]
colors = cm.Spectral_r(df_span.price.values / float(max(df_span.price.values)))
plt.bar(df_temp.date.values,df_temp.price.values,color=colors,width=1.5,align="center",zorder=1)
plt.plot(df_temp.date, df_temp.price, color='k',zorder=2) plt.scatter(df_temp.date.values[-1],
df_temp.price.values[-1], color='white',s=150,edgecolor ='k',linewidth=2,zorder=3)
plt.text(df_temp.date.values[-1], df_temp.price.values[-1]*1.18,s=np.round(df_temp.price.values[-1],1),
size=10,ha='center', va='top')
plt.ylim(0, df_span.price.max()*1.68)
plt.xlim(df_span.date.values[0], df_span.date.values[-1])
plt.xticks(ticks=df_span.date.values[0:Span_Date+1:30],labels=df_span.date.values[0:Span_Date+1:30],
rotation=0,fontsize=9)
else: df_temp=df.loc[Num_Date-Span_Date:Num_Date,:] colors = cm.Spectral_r(df_temp.price /
float(max(df_temp.price)))
plt.bar(df_temp.date.values[:-2],df_temp.price.values[:-2],color=colors[:-2],width=1.5,align="center",zorder=1)
plt.plot(df_temp.date[:-2], df_temp.price[:-2], color='k',zorder=2) plt.scatter(df_temp.date.values[-4],
df_temp.price.values[-4], color='white',s=150,edgecolor ='k',linewidth=2,zorder=3)
plt.text(df_temp.date.values[-1], df_temp.price.values[-1]*1.18,s=np.round(df_temp.price.values[-1],1),
size=10,ha='center', va='top')
plt.ylim(0, df_temp.price.max()*1.68)
plt.xlim(df_temp.date.values[0], df_temp.date.values[-1])
plt.xticks(ticks=df_temp.date.values[0:Span_Date+1:30],labels=df_temp.date.values[0:Span_Date+1:30],rotation=0,fontsize=9)
plt.margins(x=0.2) ax.spines['top'].set_color('none') # 设置上‘脊梁’为红色
ax.spines['right'].set_color('none') # 设置上‘脊梁’为无色
ax.spines['left'].set_color('none') # 设置上‘脊梁’为无色
plt.grid(axis="y",c=(217/256,217/256,217/256),linewidth=1) #设置网格线
plt.text(0.01, 0.95,"BTC平均价格($)",transform=ax.transAxes, size=10, weight='light', ha='left')
ax.text(-0.07, 1.03, '2013年到2021年的比特币BTC价格变化情况',transform=ax.transAxes, size=17, weight='light',
ha='left') fig, ax = plt.subplots(figsize=(6,4), dpi=100)
plt.subplots_adjust(top=1,bottom=0.1,left=0.1,right=0.9,hspace=0,wspace=0) draw_areachart(150)
之后使用matplotlib包的animation.FuncAnimation()函数,之后调用上述编写的draw_areachart(Num_Date)函数。
其中输入的参数Num_Date是如静态可视化中提及的日期作用一样,赋值为np.arange(0,df.shape[0],1)。
最后使用Ipython包的HTML()函数将动画转换成动画页面的形式演示。代码如下:
import matplotlib.animation as animation
from IPython.display import HTML
fig, ax = plt.subplots(figsize=(6,4), dpi=100)
plt.subplots_adjust(left=0.12, right=0.98, top=0.85, bottom=0.1,hspace=0,wspace=0)
animator = animation.FuncAnimation(fig, draw_areachart, frames=np.arange(0,df.shape[0],1),
interval=100) HTML(animator.to_jshtml())
函数FuncAnimation(fig,func,frames,init_func,interval,blit)是绘制动图函数。其参数如下:
“
fig 表示绘制动图的画布名称(figure);func为自定义绘图函数,如draw_barchart()函数;frames为动画长度,一次循环包含的帧数,在函数运行时,其值会传递给函数draw_barchart (year)的形参“year”;init_func为自定义开始帧可省略;interval表示更新频率,计量单位为ms;blit表示选择更新所有点,还是仅更新产生变化的点,应选择为True,但mac电脑用户应选择False,否则无法显示。
”
最后效果就是这样
可以看到在过去的一年中,由于机构的兴趣日益增加,比特币上涨超过了6倍,最高突破58000美元/枚,当然可以看到跌起来也是非常恐怖的,关于比特币,你怎么看?
数据分析咨询请扫描二维码
在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16