CDA数据分析师 出品
作者:Mika
【导读】
今天带大家用数据可视化解读120 年奥运变迁史。
几经波折,东京奥运会终于即将迎来开幕的时刻,距离7月23日东京奥运会开幕只有不到一周的时间了。
这次东京奥运会真可谓是命运多舛,在2020年3月24日,东京奥组委宣告,2020东京夏季奥运会延期至2021年夏季举行。
很快一年过去了,原以为疫情会过去,奥运会可以如常展开。不想除了中国,全世界的疫情反反复复,Delta毒株的肆虐使得疫情更严重。
在这种形势下的东京奥运会也出台各种防疫新规:
东京奥运会开幕式有可能将入场观众人数压缩至1000人以下;
运动员间需要保持社交距离,除了吃饭、睡觉、训练和比赛时间外,确保始终戴着口罩;
乒乓球赛制方面,比赛时运动员不许手触球台和吹球;
…...
这注定让这次奥运会成为最不平凡的一届,而各种因素也导致本届奥运会的各国奖牌榜更加难以预测,著名体育数据公司Gracenote就在预测报告中说:“由于新冠肺炎疫情的影响,东京奥运会或许成为最不可预测一届奥运会。”
那么关于奥运会这场世界上影响力最大的体育盛会,背后有哪些有趣的数据?
奥林匹克运动会发源于两千多年前的古希腊,因举办地在奥林匹亚而得名。并于1896年举办了首届奥运会,1924年举办了首届冬奥会,是世界上影响力最大的体育盛会。
我们选取了一个关于现代奥运会的历史数据集,包括从1896年雅典奥运会到2016年里约奥运会的所有奥运会。
数据集取自网站:www.sports-reference.com
需要注意的是,冬季奥运会和夏季奥运会从1994年起分开,每两年间隔举行,1992年冬季奥运会是最后一届与夏季奥运会同年举行的冬奥会。自1924年开始第1届,截至2018年共举办了23届,每四年一届。
athlete_events.csv 文件包含271116行和15列。每一行对应于在一个单独的奥运会项目(运动员项目)中参赛的运动员。列为:
首先导入包和数据。
# 导入库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly as py
import plotly.graph_objs as go
import plotly.express as px
import plotly.figure_factory as ff
from plotly.subplots import make_subplots
pyplot = py.offline.plot
# 读入数据
df_athlete = pd.read_csv('
./archive/athlete_events.csv')
df_regions = pd.read_csv('./archive/noc_regions.csv')
df_athlete.head()
df_athlete.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 271116 entries, 0 to 271115
Data columns (total 15 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 ID 271116 non-null int64
1 Name 271116 non-null object
2 Sex 271116 non-null object
3 Age 261642 non-null float64
4 Height 210945 non-null float64
5 Weight 208241 non-null float64
6 Team 271116 non-null object
7 NOC 271116 non-null object
8 Games 271116 non-null object
9 Year 271116 non-null int64
10 Season 271116 non-null object
11 City 271116 non-null object
12 Sport 271116 non-null object
13 Event 271116 non-null object
14 Medal 39783 non-null object
dtypes: float64(3), int64(2), object(10)
memory usage: 31.0+ MB
df_regions.head()
此处对数据做以下处理,以方便后续的分析:
# 合并数据
df_all = pd.merge(df_athlete, df_regions, how='left', on='NOC')
# 处理Sex列
df_all['Sex'] = df_all['Sex'].map({'M': 'Male', 'F': 'Female'})
# 处理Medal列
df_all['Medal'].fillna('No Medal', inplace=True)
df_all.head()
我们使用处理好的数据做数据可视化分析,结果如下:
1、奥运会总体数据
参赛国家数量变化
整体上来看,参赛国家呈现上升趋势,但其中有两届奥运会存在异常的下降。分别是:
1976年蒙特利尔奥运会:出现了规模空前的反种族歧视行动,此次运动会遭到了非洲国家的抵制,规模远逊于上届。
1980年莫斯科奥运会:为了表示对苏联入侵阿富汗的谴责和愤怒,美国带头拒绝参加1980年的莫斯科奥运会,并号召其他国家一起抵制。在美国的号召下,最终一共有65个国家抵制莫斯科奥运会,占当时报名参赛国数量的五分之二。最后只有80个国家参加莫斯科奥运会, 大约5000余人参赛,参赛人数还没有参与报道的记者数量多,创历史记录。
比赛项目数量变化
可以看出,奥运会的比赛项目呈现波浪式上升的趋势,其中在1980-2000年这20年,比赛项目增长趋势最大,且以夏季奥运会尤为突出,但2000年以后比赛项目增加趋势慢慢变为平稳的态势了。
各个国家累计奖牌数量TOP 20
我们选取了各个项目获得奖牌数目排名前20的国家,通过比较发现美国不管是金牌、银牌还是铜牌都领先很多,然后是俄罗斯和德国。由于缺席了多届奥运会,我国的累计奖牌数排名偏后。
2、奥运会参赛运动员数据
每届参赛人数
从图中可以观察到,夏季奥运会参赛最多人数的是2000年的悉尼奥运会,参赛人数13821人,冬季奥运会参赛人数最多的是2014年,参赛人数4891人。
参加夏季奥运会的人数远远多于冬季的人数,可能是比赛项目少的原因。同时,第一次世界大战和第二次世界大战期间没有举办过奥运会。
参赛运动员男女人数和比例变化
(男女人数变化)
(男女比例变化)
我们纵观整个奥运历史,虽然奥运会的开始,运动员男女比例较为悬殊,男性运动员占比一直高于女性运动员。但是我们可以看到,随着奥运会的发展,女性运动员的占比一直在提升,目前参加奥运会男女比例几乎接近于1:1。
参赛运动员年龄和奖牌数
图中可以看出,年龄的分布呈现右偏分布,其中80%的区域集中在19岁到33岁之间,25岁左右是运动员的黄金年龄。
纵观整个奥运史,年龄最小的运动员仅为10岁。1896年,第一届现代奥运会在希腊举办,仅仅10岁零218天的东道主体操选手Dimitrios Loundras参赛并获得了铜牌,
1928年阿姆斯特丹夏季奥运会中,一名97岁高龄的美国“运动员”,参加了雕刻的“运动项目”,但并未获得名次。这个记录应该是不会被打破了。
参赛运动员的身高、体重分布
(身高变化)
(体重变化)
我们筛选了1960年之后的数据,发现参赛选手中男性身高分布在127cm-226cm之间,女性身高分布在127cm-213cm之间,男性体重的分布在37kg-226kg之间,女性的体重分布在25kg-167kg之间。
在人类奥林匹克史上,或许没有哪一届奥运会,像2020东京奥运会一样曲折。由于各种不确定性,本届奥运会各代表团对于参赛目标都显得十分低调。
不过,从另一个角度来看,不确定性也是体育比赛魅力的一部分,“最难猜”未必就“不精彩”。
东京奥运,群雄逐鹿,一场大戏即将上演。最后让我们一起期待我国奥运健儿顺利安全参赛,取得好成绩吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06