CDA数据分析师 出品
作者:Mika
【导读】
今天带大家用数据可视化解读120 年奥运变迁史。
几经波折,东京奥运会终于即将迎来开幕的时刻,距离7月23日东京奥运会开幕只有不到一周的时间了。
这次东京奥运会真可谓是命运多舛,在2020年3月24日,东京奥组委宣告,2020东京夏季奥运会延期至2021年夏季举行。
很快一年过去了,原以为疫情会过去,奥运会可以如常展开。不想除了中国,全世界的疫情反反复复,Delta毒株的肆虐使得疫情更严重。
在这种形势下的东京奥运会也出台各种防疫新规:
东京奥运会开幕式有可能将入场观众人数压缩至1000人以下;
运动员间需要保持社交距离,除了吃饭、睡觉、训练和比赛时间外,确保始终戴着口罩;
乒乓球赛制方面,比赛时运动员不许手触球台和吹球;
…...
这注定让这次奥运会成为最不平凡的一届,而各种因素也导致本届奥运会的各国奖牌榜更加难以预测,著名体育数据公司Gracenote就在预测报告中说:“由于新冠肺炎疫情的影响,东京奥运会或许成为最不可预测一届奥运会。”
那么关于奥运会这场世界上影响力最大的体育盛会,背后有哪些有趣的数据?
奥林匹克运动会发源于两千多年前的古希腊,因举办地在奥林匹亚而得名。并于1896年举办了首届奥运会,1924年举办了首届冬奥会,是世界上影响力最大的体育盛会。
我们选取了一个关于现代奥运会的历史数据集,包括从1896年雅典奥运会到2016年里约奥运会的所有奥运会。
数据集取自网站:www.sports-reference.com
需要注意的是,冬季奥运会和夏季奥运会从1994年起分开,每两年间隔举行,1992年冬季奥运会是最后一届与夏季奥运会同年举行的冬奥会。自1924年开始第1届,截至2018年共举办了23届,每四年一届。
athlete_events.csv 文件包含271116行和15列。每一行对应于在一个单独的奥运会项目(运动员项目)中参赛的运动员。列为:
首先导入包和数据。
# 导入库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly as py
import plotly.graph_objs as go
import plotly.express as px
import plotly.figure_factory as ff
from plotly.subplots import make_subplots
pyplot = py.offline.plot
# 读入数据
df_athlete = pd.read_csv('
./archive/athlete_events.csv')
df_regions = pd.read_csv('./archive/noc_regions.csv')
df_athlete.head()
df_athlete.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 271116 entries, 0 to 271115
Data columns (total 15 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 ID 271116 non-null int64
1 Name 271116 non-null object
2 Sex 271116 non-null object
3 Age 261642 non-null float64
4 Height 210945 non-null float64
5 Weight 208241 non-null float64
6 Team 271116 non-null object
7 NOC 271116 non-null object
8 Games 271116 non-null object
9 Year 271116 non-null int64
10 Season 271116 non-null object
11 City 271116 non-null object
12 Sport 271116 non-null object
13 Event 271116 non-null object
14 Medal 39783 non-null object
dtypes: float64(3), int64(2), object(10)
memory usage: 31.0+ MB
df_regions.head()
此处对数据做以下处理,以方便后续的分析:
# 合并数据
df_all = pd.merge(df_athlete, df_regions, how='left', on='NOC')
# 处理Sex列
df_all['Sex'] = df_all['Sex'].map({'M': 'Male', 'F': 'Female'})
# 处理Medal列
df_all['Medal'].fillna('No Medal', inplace=True)
df_all.head()
我们使用处理好的数据做数据可视化分析,结果如下:
1、奥运会总体数据
参赛国家数量变化
整体上来看,参赛国家呈现上升趋势,但其中有两届奥运会存在异常的下降。分别是:
1976年蒙特利尔奥运会:出现了规模空前的反种族歧视行动,此次运动会遭到了非洲国家的抵制,规模远逊于上届。
1980年莫斯科奥运会:为了表示对苏联入侵阿富汗的谴责和愤怒,美国带头拒绝参加1980年的莫斯科奥运会,并号召其他国家一起抵制。在美国的号召下,最终一共有65个国家抵制莫斯科奥运会,占当时报名参赛国数量的五分之二。最后只有80个国家参加莫斯科奥运会, 大约5000余人参赛,参赛人数还没有参与报道的记者数量多,创历史记录。
比赛项目数量变化
可以看出,奥运会的比赛项目呈现波浪式上升的趋势,其中在1980-2000年这20年,比赛项目增长趋势最大,且以夏季奥运会尤为突出,但2000年以后比赛项目增加趋势慢慢变为平稳的态势了。
各个国家累计奖牌数量TOP 20
我们选取了各个项目获得奖牌数目排名前20的国家,通过比较发现美国不管是金牌、银牌还是铜牌都领先很多,然后是俄罗斯和德国。由于缺席了多届奥运会,我国的累计奖牌数排名偏后。
2、奥运会参赛运动员数据
每届参赛人数
从图中可以观察到,夏季奥运会参赛最多人数的是2000年的悉尼奥运会,参赛人数13821人,冬季奥运会参赛人数最多的是2014年,参赛人数4891人。
参加夏季奥运会的人数远远多于冬季的人数,可能是比赛项目少的原因。同时,第一次世界大战和第二次世界大战期间没有举办过奥运会。
参赛运动员男女人数和比例变化
(男女人数变化)
(男女比例变化)
我们纵观整个奥运历史,虽然奥运会的开始,运动员男女比例较为悬殊,男性运动员占比一直高于女性运动员。但是我们可以看到,随着奥运会的发展,女性运动员的占比一直在提升,目前参加奥运会男女比例几乎接近于1:1。
参赛运动员年龄和奖牌数
图中可以看出,年龄的分布呈现右偏分布,其中80%的区域集中在19岁到33岁之间,25岁左右是运动员的黄金年龄。
纵观整个奥运史,年龄最小的运动员仅为10岁。1896年,第一届现代奥运会在希腊举办,仅仅10岁零218天的东道主体操选手Dimitrios Loundras参赛并获得了铜牌,
1928年阿姆斯特丹夏季奥运会中,一名97岁高龄的美国“运动员”,参加了雕刻的“运动项目”,但并未获得名次。这个记录应该是不会被打破了。
参赛运动员的身高、体重分布
(身高变化)
(体重变化)
我们筛选了1960年之后的数据,发现参赛选手中男性身高分布在127cm-226cm之间,女性身高分布在127cm-213cm之间,男性体重的分布在37kg-226kg之间,女性的体重分布在25kg-167kg之间。
在人类奥林匹克史上,或许没有哪一届奥运会,像2020东京奥运会一样曲折。由于各种不确定性,本届奥运会各代表团对于参赛目标都显得十分低调。
不过,从另一个角度来看,不确定性也是体育比赛魅力的一部分,“最难猜”未必就“不精彩”。
东京奥运,群雄逐鹿,一场大戏即将上演。最后让我们一起期待我国奥运健儿顺利安全参赛,取得好成绩吧!
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13