来源:数据STUDIO
作者:云朵君
所有的参数,属性与接口,全部和随机森林分类器一致。仅有的不同就是回归树与分类树的不同,不纯度的指标, 参数Criterion不一致。
RandomForestRegressor(n_estimators='warn',
criterion='mse',
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features='auto',
max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None,
bootstrap=True,
oob_score=False,
n_jobs=None,
random_state=None,
verbose=0,
warm_start=False)
criterion
回归树衡量分枝质量的指标,支持的标准有三种
其中是样本数量,i是每一个数据样本,是模型回归出的数值,是样本点i实际的数值标签。所以MSE的本质是样本真实数据与回归结果的差异。在回归树中,MSE不只是我们的分枝质量衡量指标,也是我们最常用的衡量回归树回归质量的指标,当我们在使用交叉验证,或者其他方式获取回归树的结果时,我们往往选择均方误差作为我们的评估(在分类树中这个指标是score代表的预测准确率)。在回归中,我们追求的是,MSE越小越好。
然而,回归树的接口score返回的是R平方,并不是MSE。此处可参考线性回归中模型评估指标。
最重要的属性和接口,都与随机森林的分类器相一致,还是apply, fit, predict和score最为核心。值得一提的是,随机森林回归并没有predict_proba这个接口,因为对于回归来说,并不存在一个样本要被分到某个类别的概率问题,因此没有predict_proba这个接口。
from sklearn.datasets import load_boston from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestRegressor
boston = load_boston()
regressor = RandomForestRegressor(n_estimators=100,random_state=0)
cross_val_score(regressor, boston.data, boston.target, cv=10 ,scoring = "neg_mean_squared_error")
sorted(sklearn.metrics.SCORERS.keys())
返回十次交叉验证的结果,注意在这里,如果不填写scoring = "neg_mean_squared_error",交叉验证默认的模型衡量指标是R平方,因此交叉验证的结果可能有正也可能有负。而如果写上scoring,则衡量标准是负MSE,交叉验证的结果只可能为负。
在之前缺失值处理文章中提到运用随机森林回归填补缺失值,我们来看看具体如何操作。
导包
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston from sklearn.impute import SimpleImputer from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import cross_val_score
数据准备
以波⼠顿数据集为例,导⼊完整的数据集并探索
dataset = load_boston()
dataset.data.shape #总共506*13=6578个数据 X, y = dataset.data, dataset.target
n_samples = X.shape[0]
n_features = X.shape[1]
生产缺失值
rng = np.random.RandomState(0) missing_rate = 0.5 n_missing_samples = int(np.floor(n_samples * n_features * missing_rate)) #np.floor向下取整,返回.0格式的浮点数
所有数据要随机遍布在数据集的各⾏各列当中,⽽⼀个缺失的数据会需要⼀个⾏索引和⼀个列索引如果能够创造⼀个数组,包含3289个分布在0~506中间的⾏索引,和3289个分布在0~13之间的列索引,那我们就可以利⽤索引来为数据中的任意3289个位置赋空值。
我们现在采样3289个数据,远远超过样本量506,所以使⽤随机抽取的函数randint。但如果需要的数据量⼩于我们的样本量506,那我们可以采⽤np.random.choice来抽样,choice会随机抽取不重复的随机数,因此可以帮助我们让数据更加分散,确保数据不会集中在⼀些⾏中。
missing_features_index = rng.randint(0,n_features,n_missing_samples)
missing_samples_index = rng.randint(0,n_samples,n_missing_samples) # missing_samples=rng.choice(dataset.data.shape[0],n_missing_samples,replace=False) X_missing = X.copy()
y_missing = y.copy()
X_missing[missing_samples, missing_features] = np.nan
X_missing = pd.DataFrame(X_missing) # 转换成DataFrame是为了后续⽅便各种操作, # numpy对矩阵的运算速度快,但是在索引等功能上却不如pandas来得好⽤
然后我们⽤0,均值和随机森林来填写这些缺失值,然后查看回归的结果如何
#使⽤均值进⾏填补 from sklearn.impute import SimpleImputer
imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')
X_missing_mean = imp_mean.fit_transform(X_missing) #使⽤0进⾏填补 imp_0 = SimpleImputer(missing_values=np.nan, strategy="constant",fill_value=0)
X_missing_0 = imp_0.fit_transform(X_missing)
随机森林填补
使⽤随机森林回归填补缺失值任何回归都是从特征矩阵中学习,然后求解连续型标签y的过程,之所以能够实现这个过程,是因为回归算法认为,特征矩阵和标签之前存在着某种联系。实际上,标签和特征是可以相互转换的,⽐如说,在⼀个"⽤地区,环境,附近学校数量"预测"房价"的问题中,我们既可以⽤"地区","环境","附近学校数量"的数据来预测"房价",也可以反过来,⽤"环境","附近学校数量"和"房价"来预测"地区"。⽽回归填补缺失值,正是利⽤了这种思想。
对于⼀个有n个特征的数据来说,其中特征T有缺失值,我们就把特征T当作标签,其他的n-1个特征和原本的标签组成新的特征矩阵。那对于T来说,它没有缺失的部分,就是我们的Y_test,这部分数据既有标签也有特征,⽽它缺失的部分,只有特征没有标签,就是我们需要预测的部分。
特征T不缺失的值对应的其他n-1个特征 + 本来的标签:X_train
特征T不缺失的值:Y_train
特征T缺失的值对应的其他n-1个特征 + 本来的标签:X_test
特征T缺失的值:未知,我们需要预测的Y_test
这种做法,对于某⼀个特征⼤量缺失,其他特征却很完整的情况,⾮常适⽤。
那如果数据中除了特征T之外,其他特征也有缺失值怎么办?答案是遍历所有的特征,从缺失最少的开始进⾏填补(因为填补缺失最少的特征所需要的准确信息最少)。填补⼀个特征时,先将其他特征的缺失值⽤0代替,每完成⼀次回归预测,就将预测值放到原本的特征矩阵中,再继续填补下⼀个特征。每⼀次填补完毕,有缺失值的特征会减少⼀个,所以每次循环后,需要⽤0来填补的特征就越来越少。当进⾏到最后⼀个特征时(这个特征应该是所有特征中缺失值最多的),已经没有任何的其他特征需要⽤0来进⾏填补了,⽽我们已经使⽤回归为其他特征填补了⼤量有效信息,可以⽤来填补缺失最多的特征。遍历所有的特征后,数据就完整,不再有缺失值了。
X_missing_reg = X_missing.copy()
sortindex = np.argsort(X_missing_reg.isnull().sum(axis=0)).values
for i in sortindex:
#构建我们的新特征矩阵和新标签 df = X_missing_reg
fillc = df.iloc[:,i]
df = pd.concat([df.iloc[:,df.columns != i],pd.DataFrame(y_full)],axis=1)
#在新特征矩阵中,对含有缺失值的列,进⾏0的填补 df_0 =SimpleImputer(missing_values=np.nan,
strategy='constant',fill_value=0).fit_transform(df)
#找出我们的训练集和测试集 Ytrain = fillc[fillc.notnull()]
Ytest = fillc[fillc.isnull()]
Xtrain = df_0[Ytrain.index,:]
Xtest = df_0[Ytest.index,:]
#⽤随机森林回归来填补缺失值 rfc = RandomForestRegressor(n_estimators=100)
rfc = rfc.fit(Xtrain, Ytrain)
Ypredict = rfc.predict(Xtest)
#将填补好的特征返回到我们的原始的特征矩阵中 X_missing_reg.loc[X_missing_reg.iloc[:,i].isnull(),i] = Ypredict
建模
#对所有数据进⾏建模,取得MSE结果 X = [X_full,X_missing_mean,X_missing_0,X_missing_reg] mse = [] std = [] for x in X:
estimator = RandomForestRegressor(random_state=0, n_estimators=100)
scores =
cross_val_score(estimator,x,y_full,scoring='neg_mean_squared_error',
cv=5).mean()
mse.append(scores * -1)
可视化
x_labels = ['Full data',
'Zero Imputation',
'Mean Imputation',
'Regressor Imputation']
colors = ['r', 'g', 'b', 'orange']
plt.figure(figsize=(12, 6))
ax = plt.subplot(111) for i in np.arange(len(mse)):
ax.barh(i, mse[i],color=colors[i], alpha=0.6, align='center')
ax.set_title('Imputation Techniques with Boston Data')
ax.set_xlim(left=np.min(mse) * 0.9,right=np.max(mse) * 1.1)
ax.set_yticks(np.arange(len(mse)))
ax.set_xlabel('MSE')
ax.set_yticklabels(x_labels)
plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06