
来源:数据STUDIO
作者:云朵君
查询"01"课程比"02"课程成绩高的学生信息及课程分数
分析
第一步:根据需要查询的最终结果确认所需用到的表:"学生信息及课程分数",需要用到学生信息表与成绩表;
第二步:确认条件:"01"课程比"02"课程成绩高的学生,需要先分别查出"01"课程的成绩与"02"课程,再根据条件"成绩更高"筛选出学生;
#查询01课程的成绩 SELECT * FROM sc WHERE c_id='01';
#查询02课程的成绩 SELECT * FROM sc WHERE c_id='02';
第三步:查询:根据第二步筛选出的学生,查询出对应学生的"学生信息及课程分数"。
语句
SELECT stu.*,sc.c_id,sc.score FROM (SELECT * FROM sc WHERE c_id='01') t1 JOIN (SELECT * FROM sc WHERE c_id='02') t2 ON t1.s_id=t2.s_id JOIN stu ON t1.s_id=stu.s_id JOIN sc ON stu.s_id=sc.s_id WHERE t1.score>t2.score;
结果
s_ids_names_births_sexc_idscore02钱电1990-12-21男017002钱电1990-12-21男026002钱电1990-12-21男038004李云1990-08-06男015004李云1990-08-06男023004李云1990-08-06男0320
如果要求课程分数需要"课程名称"与"对应分数",则还需要跟课程表连接以显示课程名及分数。
语句
SELECT stu.*,co.c_name,sc.score FROM (SELECT * FROM sc WHERE c_id='01') t1 JOIN (SELECT * FROM sc WHERE c_id='02') t2 ON t1.s_id=t2.s_id JOIN stu ON t1.s_id=stu.s_id JOIN sc ON stu.s_id=sc.s_id JOIN co ON sc.c_id=co.c_id WHERE t1.score>t2.score;
结果
s_ids_names_births_sexc_namescore02钱电1990-12-21男语文7004李云1990-08-06男语文5002钱电1990-12-21男数学6004李云1990-08-06男数学3002钱电1990-12-21男英语8004李云1990-08-06男英语20
以上例子中先分别查出"01"课程的成绩与"02"课程,再根据查询出的结果去查询对应学生信息及课程成绩,即用到本节将要介绍的子查询。
在SELECT语句中,子查询总是从内向外处理。在处理上面的SELECT语句时,MySQL实际上执行了两个操作。
首先,它执行下面的查询:
SELECT t1.* FROM (SELECT * FROM sc WHERE c_id='01') t1 JOIN (SELECT * FROM sc WHERE c_id='02') t2 ON t1.s_id=t2.s_id WHERE t1.score>t2.score;
此时得到两个学生编号s_id等于02和04表格:
s_idc_idscore020170040150
然后,将得到的表格t与另外两个表格连接后再查询。
SELECT stu.*,sc.c_id,sc.score FROM t JOIN stu ON t1.s_id=stu.s_id JOIN sc ON stu.s_id=sc.s_id
其实这里也分了两步:
SELECT stu.*,sc.c_id,sc.score FROM t JOIN stu ON t1.s_id=stu.s_id
结果:
s_ids_names_births_sexc_idscore02钱电1990-12-21男017004李云1990-08-06男0150
这里只得到了这两个学生的课程1的成绩,结果需要查询到这两个学生所有课程的成绩,因此需要将上述得到的表格tt再与成绩表连接。
SELECT stu.*,sc.c_id,sc.score FROM tt JOIN sc ON stu.s_id=sc.s_id
格式化SQL 包含子查询的SELECT 语句难以阅读和调试,特别是它们较为复杂时更是如此。如上所示把子查询分解为多行并且适当地进行缩进,能极大地简化子查询的使用。
查询没学过"张三"老师授课的同学的信息
首先需要查询出"张三"老师授课信息:
SELECT stu.s_id FROM te LEFT JOIN co ON te.t_id=co.t_id LEFT JOIN sc ON co.c_id=sc.c_id LEFT JOIN stu ON sc.s_id=stu.s_id WHERE t_name='张三';
得到"张三"老师授课信息s_id为01,02,03,04,05,07。然后,这两个值以 NOT IN 操作符要求的逗号分隔的格式传递给外部查询的 WHERE 子句。
外部查询变成:
SELECT * FROM stu WHERE s_id NOT IN (01,02,03,04,05,07);
结果:
s_ids_names_births_sex06吴兰1992-03-01女08王菊1990-01-20女
可见,在 WHERE子句中使用子查询能够编写出功能很强并且很灵活的SQL语句。对于能嵌套的子查询的数目没有限制,不过在实际使用时由于性能的限制,不能嵌套太多的子查询。
列必须匹配 在WHERE子句中使用子查询(如这里所示),应该保证SELECT语句具有与WHERE 子句中相同数目的列。通常,子查询将返回单个列并且与单个列匹配,但如果需要也可以使用多个列。
使用子查询的另一方法是创建计算字段。
查询每位学生选修的课程数
首先可使用 SELECT COUNT(*)对表中的行进行计数,并且通过提供一条WHERE子句来过滤某个特定的学生,可仅对该学生的课程进行计数。
SELECT COUNT(c_id) FROM sc WHERE s_id = '01';
为了对每个学生执行COUNT(*)计算,应该将COUNT(*)作为一个子查询。
SELECT *, (SELECT COUNT(c_id)
FROM sc
WHERE sc.s_id = stu.s_id) AS cos FROM stu;
结果:
s_ids_names_births_sexcos01赵雷1990-01-01男302钱电1990-12-21男303孙风1990-05-20男304李云1990-08-06男305周梅1991-12-01女206吴兰1992-03-01女207郑竹1992-04-21女208王菊1990-01-20女0
这条SELECT语句对customers表中每个学生返回5列:s_id,s_name,s_birth,s_sex和cos。cos是一个计算字段,它是由圆括号中的子查询建立的。该子查询对检索出的每个学生执行一次。在此例子中,该子查询执行了8次,因为检索出了8个学生。
子查询中的 WHERE子句使用了完全限定列名,任何时候只要列名可能有多义性,就必须使用这种语法(表名和列名由一个句点分隔)。如果不使用完全限定的列名会与本身匹配。
逐渐增加子查询来建立查询 用子查询测试和调试查询很有技巧性,特别是在这些语句的复杂性不断增加的情况下更是如此。用子查询建立(和测试)查询的最可靠的方法是逐渐进行,这与MySQL处理它们的方法非常相同。首先,建立和测试最内层的查询。然后,用硬编码数据建立和测试外层查询,并且仅在确认它正常后才嵌入子查询。这时,再次测试它。对于要增加的每个查询,重复这些步骤。这样做仅给构造查询增加了一点点时间,但节省了以后(找出查询为什么不正常)的大量时间,并且极大地提高了查询一开始就正常工作的可能性。
数据库建立即数据导入准备
-- 创建数据库school CREATE DATABASE school; -- 选择进入school数据库 USE school; -- ------------建表导数------------- -- 创建stu CREATE TABLE stu(
s_id VARCHAR(10) PRIMARY KEY,
s_name VARCHAR(10) NOT NULL,
s_birth DATE,
s_sex VARCHAR(10)) -- 导入数据 INSERT INTO stu VALUES ('01' , '赵雷' , '1990-01-01' , '男'),
('02' , '钱电' , '1990-12-21' , '男'),
('03' , '孙风' , '1990-05-20' , '男'),
('04' , '李云' , '1990-08-06' , '男'),
('05' , '周梅' , '1991-12-01' , '女'),
('06' , '吴兰' , '1992-03-01' , '女'),
('07' , '郑竹' , '1992-04-21' , '女'),
('08' , '王菊' , '1990-01-20' , '女'); SELECT * FROM stu; -- 检查数据 SELECT COUNT(*) FROM stu; -- 检查总行数 -- 创建co CREATE TABLE co(
c_id VARCHAR(10) PRIMARY KEY,
c_name VARCHAR(10),
t_id VARCHAR(10)); -- 导入数据 INSERT INTO co VALUES ('01' , '语文' , '02'),
('02' , '数学' , '01'),
('03' , '英语' , '03'); SELECT * FROM co; -- 检查数据 SELECT COUNT(*) FROM co; -- 检查总行数 -- 创建te CREATE TABLE te(
t_id VARCHAR(10) PRIMARY KEY,
t_name VARCHAR(10)); -- 导入数据 INSERT INTO te VALUES ('01' , '张三'),
('02' , '李四'),
('03' , '王五'); SELECT * FROM te; -- 检查数据 SELECT COUNT(*) FROM te; -- 检查总行数 -- 创建sc CREATE TABLE sc(
s_id VARCHAR(10),
c_id VARCHAR(10),
score int); -- 导入数据 INSERT INTO sc VALUES ('01' , '01' , 80),
('01' , '02' , 90),
('01' , '03' , 99),
('02' , '01' , 70),
('02' , '02' , 60),
('02' , '03' , 80),
('03' , '01' , 80),
('03' , '02' , 80),
('03' , '03' , 80),
('04' , '01' , 50),
('04' , '02' , 30),
('04' , '03' , 20),
('05' , '01' , 76),
('05' , '02' , 87),
('06' , '01' , 31),
('06' , '03' , 34),
('07' , '02' , 89),
('07' , '03' , 98); SELECT * FROM sc; -- 检查数据 SELECT COUNT(*) FROM sc; -- 检查总行数
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04