京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 Jeremie Harris
编译 Mika
我在招聘公司SharpestMinds工作,因此我看过许多数据科学方面的简历。同时我们也不断得到其他公司的反馈,了解到他们会面试哪些人,哪些人最终能顺利被雇佣。
在了解数百家公司的招聘过程后,我们总结了哪些简历会受到公司的青睐,以及哪些简历不会被通过。
注意,每家公司的要求各不相同。比如被谷歌聘用的人在其他公司也可能会落选。所以说,一份无可挑剔的数据科学岗位简历是不存在的。
话虽如此,但简历中有些错误是致命的。
在下文中,我们总结了简历中应避免的四个错误。
在简历中堆砌大量无关紧要的项目,这会让你的简历大打折扣。
以下这类项目就是减分项:
· 使用泰坦尼克号数据集进行幸存者分类。
· 使用MNIST数据集进行手写数字分类。
· 使用虹膜数据集进行花种类分类。
为什么
求职者和招聘人员都很清楚,简历的篇幅有限。因此,如果在简历上过多罗列MNIST数据集分类等项目,那么招聘人员会对你之后的发展空间产生质疑。
该怎么做
如果你有其他更有趣的项目,那么不要犹豫,换下这些减分的项目是不错的选择。
如果你的简历上列有这类项目,而且你没有其他更具挑战性和实质性的项目来代替,这说明你需要花些时间做一些项目,让自己的简历更具有说服性。
例外
当然,使用MNIST或泰坦尼克号数据集也能完成复杂的项目。比如你使用了自己创建的新型GAN,或者你重现了有趣的胶囊网络(replicating)论文的结果,那么就大胆尝试。
但要记住,大多数招聘人员都是非技术人员,他们通常只会关注简历中的关键字。因此如果你使用了MNIST数据集,需要清楚地标明你的项目不仅仅只包含简单的数字分类任务。
Udacity、Coursera和deeplearning.ai这些在线课程都是进行数据科学和深度学习的不错选择。
但是在简历中,还是要避免以下情况:
· 简历中大部分项目是纳米学位等在线课程中完成的内容。
· 在简历中过分强调在线课程项目。
为什么
招聘中需要突出自我能力。许多公司都想招聘独一无二的人才。由于现在在线课程特别多,仅靠这点无法让你在求职者中脱颖而出。
如今招聘人员对许多在线课程很熟悉,可以立即分辨出哪些是纳米学科等项目。为了脱颖而出,你需要关注还没得到充分研究的问题。
这里我想明确的是,Udacity、Coursera和deeplearning.ai都是很棒的在线学习平台。但是把这些放在简历前面,不能很好地体现求职者的特别性。
该怎么做
在完成在线课程之后,你要马上利用所学的知识,参加Kaggle比赛,或者去探究数据科学论文中的成果。
这很重要,因为会体现你的与众不同;让你在面试中有展示自己的机会;证明你在没有帮助的情况下很强的学习能力。
例外
如果你完成的在线课程项目是独一无二的,则无需担心。这里指的是,你能自由地选择数据集,从头开始自己解决问题。
缺乏以下技能对要从事数据科学来说,可能是致命的。
以下是一些必备技能:
· 版本控制 (GitHub / GitLab)
· 开发运维(AWS / Floydhub / Digital Ocean / Flask)
· 数据库 (mySQL / mongoDB)
为什么
对于数据科学,人们感兴趣的往往是算法。因此这也是大多数人投入时间精力的地方。问题在于,设计模型与可用于生产的深度学习或数据科学不同。
数据科学中不太有趣的部分(设置服务器,清理数据)实际上构成了数据科学家的日常工作。因此,仅仅掌握Python / sklearn / TensorFlow / Keras / PyTorch这些是不够的。
对于求职人员来说,不具备这些技能可能就会被淘汰。
不会GitHub?不会mongo?那不用了,谢谢。
该怎么做
如果你掌握这些技能,但没列在简历上,那么请加上。如果你缺乏这些技能,那么建议你去学习,因为对于数据科学家来说这些是必不可少的。
例外
如果你申请的更高级的职位,那么是否列出这些技能并不太重要。但是高级的职位意味着你需要更多的经验。
如果你的简历中列出了某个项目,那么面试中很可能问到这个项目。
如果面试官问你在这个项目中学到了什么,但你答不出来的话,这会让面试官对你的印象大打折扣。
为什么
既然你在某个项目上花了时间,那么关于这个项目的问题能够体现你从中学到了什么,还会体现你考虑问题的深度和沟通技巧。
即使是一个非常简单的数据集,你也能从中有所收获。
该怎么做
如果你在简历中列出了某个项目,在面试时你要准备好关于这个项目的见解和看法。
例外
这里没有例外,如果你简历中罗列了某个项目,你需要对其进行总结反思。
这并不是数据科学方面的问题,但在面试时我们惊讶的发现很多人会出现拼写错误。总而言之,在简历中出现错别字、拼写错误和格式错误都是致命的。
无论你的经验水平如何,拼写错误都是必须避免的问题,这会让你的面试大大减分。
为什么
毫不奇怪,你在简历中体现的细节问题是与你的项目能力和技术发展息息相关的。
该怎么做
注意细节,仔细检查。如果简历是英文或面试国外公司,可以让英语为母语的人帮你检查。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31