职场,就像是修罗场,有的人经历飞速成长阶段一步一步走向人生巅峰,也有的人迷茫在自己职场的方向,无法自拔。当然,职场上没有人不希望升职加薪,获得更多的晋升空间。
疫情期间,大多数白领都经历了一些“职场灰暗时刻”。裁员降薪一度成为较普遍的现象,年长白领的工作机会在变少,年轻白领的工资缩水。面对不确定的大环境,唯一的确定因素就是自身职场竞争力。由此可见,一个人如果想混的开,关键在于他能给企业带来什么样的价值。
如今,我们生活在数字化的浪潮下,在各行各业的发展中,数字化转型都是绕不开的话题。
企业在发展过程中会遇到大量的数据,它是数字化转型的基础,数据找不到、看不懂、不准确、不及时,都会成为企业数字化转型路上的重大阻碍,这个时候就需要用到数据分析师。
数据分析不是简单的“分析数据”,它是一种解决问题的方法,一个解决问题的过程,甚至可以认为是一种方法观。作为一名数据分析工作者,这里所说的数据分析是一个相对狭义的概念,如果没有合理的执行体系和标准化的工作流程,就会形成表面化的错误,从而影响到工作效率,更重要的是影响最终的分析结论,都说“按流程办事”,数据分析也不例外。
1、明确目的
用数据说话,从数据分析的角度解决问题,用数据支持结论。从监测角度来说,业务问题一般以两种方式出现,第一种是在长期监测中发现某一环节运行异常,另外一种是在开展业务任务时即时遇到阻碍,不管怎么样,问题摆在面前需要解决。
在开始数据分析之前,必须明确要分析什么,要解决什么问题,一项数据分析,不是一蹴而就,需要过程,如果不能做到有的放矢,多半会导致分析方向发生偏移,盲目无序的开头将导致后续的工作白白浪费。发生了什么?为什么要这样做?要得到什么?如何得到?等等这些问题需要在分析之前弄清楚,只有先明确了目的,对数据分析的主要内容有针对的了解,才能作出合理有效的解决方案。
2、获取数据
按照数据分析的目的、具体内容,收集所需数据,此时最重要的是保证获取数据的真实可靠性。这些数据源就像盖房子打地基,没有这个基础,不管采用多么高级的分析方法都是白费力气。“garbage in,garbage out”。另外,不要过于期望一口气将所有数据都采集全,在预处理和数据分析阶段你可能会发现还缺少某一部分数据源,这是反馈调节的过程,需要耗费大量的时间反复甄别。
3、预处理
现在存储于后台的数据太多了,以前做项目担心没有真实可靠的数据,现在这个问题没有那么复杂,但数据太多却引发了其他问题。辛苦采集到的数据口径不一致,存储格式不同,不符合数据分析要求还有待派生新的变量,这些过程看似简单却非常有必要!
仅仅预处理以上这些问题还不够,当数据分析方法复杂时,我们还需对采集的数据进行筛选构成小的数据集,对于数据集中变量的分布、缺少、描述统计指标进行一定程度的分析。可以说,获取数据+预处理将耗费整个执行过程的大部分时间,很繁琐,但非常的重要。
4、数据分析
在这个阶段建议采用简单有效的分析方法,切记不要“为了分析而分析”。数据分析方法有很多种,不一定越是高级的方法就越有效。数据分析的工具也一样,能用Excel就不用SPSS,选择合理得当高效的方法和工具,只要能解决问题即可。如果你很自信,可以合理选择有效驾驭,那选用一些高级的方法和工具对提高整个数据分析过程的共识性、专业性、精确性都有非常之大的帮助。
和前两个环节一样,这个过程也是费力不讨好的,而且伴有枯燥、沮丧、焦虑等心态,不断调整自己的心态也是这三个阶段的重点和关键。
5、提交报告
做一个数据分析的项目,不能不下结论!
雷声大,雨点小的事情,作为数据分析师千万要避免发生。提交数据分析报告,提出解决问题的方案或建议,对业务问题进行及时处理,养成这个良好的习惯。数据分析报告采用PPT格式、Word格式都可以,做到结构合理、结论坚定,图文并茂。
这个阶段切记不要搞得太花哨,语气低调不要太夸张,有自己的结论,有自己的观点,能有效解决问题,并针对类似问题进行监控,防止再次发生。
按流程办事的好处就在于各环节的不断反馈,出现偏差时返回到各个环节进行审核优化,突出解决问题的主线,总之一句话,数据分析不是儿戏,需要一个相对标准化的流程来遵循。
目前数据分析几乎覆盖了所有的行业,互联网、金融、咨询、电信、零售、医疗、旅游等,涉及岗位包括大数据、数据分析、市场、产品、运营、咨询、投资、研发等。
这是在某招聘网站截取的数据分析师就业薪资,可以看到拥有一年工作经验的数据分析师薪资就可以达到10K以上。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14