
来源:Python爬虫与数据挖掘
作者: Python进阶者
大家好,我是Python进阶者。
前言
我们在进行Python编程的时候,时常要将一些数据保存起来,其中最方便的莫过于保存在文本文件了。但是如果保存的文件太大,用文本文件就不太现实了,毕竟打开都是个问题,这个时候我们需要用到数据库。提到数据库,相信大部分人都不会陌生,今天我们要学的就是数据库中小编自认为最棒的Mysql数据库了。
为了让Python与Mysql 交互,这里我们需要用到Pymsql模块才行。
下载模块:
pip install pymysql
导入模块:
import pymysql
打开数据库连接软件 SqlYong,如图:
输入命令:
CREATE DATABASE IF NOT EXISTS people;
这样就创建了一个people 数据库。
USE people; CREATE TABLE IF NOT EXISTS student(id INT PRIMARY KEY AUTO_INCREMENT,NAME CHAR(10) UNIQUE,score INT NOT NULL,tim DATETIME)ENGINE=INNOBASE CHARSET utf8; INSERT INTO student(NAME,score,tim)VALUES('fasd',60,'2020-06-01') SELECT * FROM student;
通过上述操作便创建了一个数据表Student并向其中写入了数据,结果如下:
我们可以一行代码删除这个插入的 数据:
TRUNCATE student;
将下图中的参数依次填入初始化参数中,
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
这样就连接到了people数据库,可以看下连接成功的打印信息:
可以看到我们打印了Mysql的版本和Host信息。
1.创建游标
cur=db.cursor
2.编写插入数据表达式
sql="INSERT INTO student(NAME,score,tim)VALUES('任性的90后boy',100,now())"
3.开启游标事件
cur.begin()
4.执行数据库语句,异常判断
try:
cur.execute(sql) 执行数据库语句
except Exception as e: print(e)
db.rollback() 发生异常进行游标回滚操作 else:
db.commit() 提交数据库操作 finally:
cur.close() 关闭游标
db.close() 关闭数据库
5,执行插入操作
数据库建立好后,我们可以对它们进行插入数据的操作。
import time
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
cur=db.cursor()
db.begin()
sql="INSERT INTO student(NAME,score,tim) VALUES ('%s',%d,'%s')" data=('HW',90,tt) try:
cur.execute(sql%data)
except Exception as e:
print(e)
db.rollback() else:
db.commit() finally:
cur.close()
db.close()
这样就可以将数据插入进去了。我们还可以自定义插入:
import pymysql
import time tt=time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
cur=db.cursor()
db.begin()
s=input('string:')
d=input('number:')
sql="INSERT INTO student(NAME,score,tim)VALUES('%s','%s','%s')" try:
data=(s,d,tt)
cur.execute(sql%data)
except Exception as e: print(e)
db.rollback() else:
db.commit()
finally:
cur.close()
db.close()
另外,我们也可以同时插入多条数据,只需先定义好所有的数据,然后在调用即可,这里需要用到插入多条数据的函数Executemany,在这里我插入十万条数据,并测试插入时间,步骤如下:
import pymysql
import time start=time.time()
tt=time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
cur=db.cursor()
db.begin() sql="insert into student(NAME,score,tim)values(%s,%s,%s)" def get():
ab=[] for y in range(1,100000): if y>=100: data=('user-'+str(y),str(str(float('%.f'%(y%100)))),tt) else: data=('user-'+str(y),str(y),tt)
ab.append(data) return ab
try: data=get()
cur.executemany(sql,data) except Exception as e:
print(e)
db.rollback() else:
db.commit()
finally:
print('插入数据完毕')
cur.close()
db.close() end=time.time()
print('用时:',str(end-start))
6.执行更新操作
有些数据我们觉得它过时了,想更改,就要更新它的数据。
import time
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
cur=db.cursor()
db.begin()
sql="update student set name='zjj' where score=100 " 当分数是100分的时候将名字改为zjj try:
cur.execute(sql%data) except Exception as e:
print(e)
db.rollback() else:
db.commit() finally:
cur.close()
db.close()
7.执行删除操作
有时候一些数据如果对于我们来说没有任何作用了的话了,我们就可以将它删除了,不过这里是删除数据表中的一条记录。
import pymysql
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
cur=db.cursor()
db.begin()
sql="delete from student where name='fasd';" 当名字等于‘fasd’的时候删除这个记录 try:
cur.execute(sql) except Exception as e:
print(e)
db.rollback() else:
db.commit() finally:
cur.close()
db.close()
你也可以删除表中所有的数据,只需将Sql语句改为:
sql='TRUNCATE student;'
当然你也可以删除表,但是一般不建议这样做,以免误删:
DROP TABLE IF EXISTS student;
8.执行查询操作
有时候我们需要对数据库中的数据进行查询,Python也能轻松帮我们搞定。
import pymysql
import time tt=time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
cur=db.cursor()
db.begin()
sql="select * from student;" try:
cur.execute(sql)
res=cur.fetchall() 查询数据库中的数据 for y in res: print(y) 打印数据库中标的所有数据,以元祖的形式
except Exception as e: print(e)
db.rollback() else:
db.commit()
finally:
cur.close()
db.close()
在我们进行网络爬虫的时候,需要保存大量数据,这个时候数据库就派上用场了,可以更方便而且更快捷保存数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10