
来源:AirPython
作者:星安果
大家好,我是安果!
PgSQL,全称为 PostgreSQL,是一款免费开源的关系型数据库
相比最流行的 Mysql 数据库,PgSQL 在可靠性、数据完整性、扩展性方面具有绝对的优势
本篇文章将聊聊如何使用 Python 操作 PgSQL 数据库
Python 操作 PgSQL,需要先安装依赖包「 psycopg2 」
# 安装依赖包
pip3 install psycopg2
接下来,就可以使用 Python 来操作数据库了
2-1 数据库连接及游标对象
使用 psycopg2 中的「 connect() 」方法连接数据库,创建数据库连接对象及游标对象
import psycopg2
# 获得连接对象
# database:数据库名称
# user:用户名
# password:密码
# host:数据库ip地址
# port:端口号,默认为5432
conn = psycopg2.connect(database="db_name", user="postgres", password="pwd", host="127.0.0.1", port="5432")
# 获取游标对象
cursor = conn.cursor()
获取游标对象后,就可以执行 SQL,进而操作数据库了
2-2 插入数据
首先,编写插入数据的 SQL 语句及参数( 可选 )
# 构建SQL语句
# 方式一:直带参数
sql = "INSERT INTO student (name,age)
VALUES (%s, '%s')" %
('xag',23)
# 方式二:参数分离
sql = """INSERT INTO student (name,age) VALUES (%s, %s)"""
# 参数
params = ('xag',23)
然后,使用游标对象执行 SQL
# 执行sql
# 注意:params可选,根据上面的参数方式来选择设置
cursor.execute(sql,[params])
接着,使用连接对象提交事务
# 事务提交
conn.commit()
最后,释放游标对象及数据库连接对象
# 释放游标对象及数据库连接对象
cursor.close()
conn.close()
2-3 查询数据
游标对象的 fetchone()、fetchmany(size)、fetchall() 这 3个函数即可以实现单条数据查询、多条数据查询、全部数据查询
# 获取一条记录
one_data = cursor.fetchone()
print(one_data)
# 获取2条记录
many_data = cursor.fetchmany(2)
print(many_data)
# 获取全部数据
all_data = cursor.fetchall()
print(all_data)
需要注意的是,条件查询与上面的插入操作类似,条件语句可以将参数分离出来
# 条件查询 SQL语句
sql = """SELECT * FROM student where id = %s;"""
# 对应参数,参数结尾以逗号结尾
params = (1,)
# 执行SQL
cursor.execute(sql, params)
# 获取所有数据
datas = cursor.fetchall()
print(datas)
2-4 更新数据
更新操作和上面操作一样,唯一不同的是,执行完 SQL 后,需要使用连接对象提交事务,才能将数据真实更新到数据库中
def update_one(conn, cursor):
"""更新操作"""
# 更新语句
sql = """update student set name = %s where id = %s """
params = ('AirPython', 1,)
# 执行语句
cursor.execute(sql, params)
# 事务提交
conn.commit()
# 关闭数据库连接
cursor.close()
conn.close()
2-5 删除数据
删除数据同更新数据操作类似
def delete_one(conn, cursor):
"""删除操作"""
# 语句及参数
sql = """delete from student where id = %s """
params = (1,)
# 执行语句
cursor.execute(sql, params)
# 事物提交
conn.commit()
# 关闭数据库连接
cursor.close()
conn.close()
通过上面操作,可以发现 Python 操作 PgSQl 与 Mysql 类似,但是在原生 SQL 编写上两者还是有很多差异性
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08