来源:早起Python
作者:刘早起
大家好,我是早起。
之前的文章中提到,很多人认为理解了装饰器的概念和用法后,会觉得自己的 Python 水平有一个明显的提高。
但很多教程在一上来就会给出装饰器的定义以及基本用法,例如你一定会在很多文章中看到例如代码运行时间计时器等相关常用装饰器。
直接从应用入手这样学习当然十分有效,但不是看过就忘就是似懂非懂的状态,因为装饰器从来就不是一个单独的概念,就像数学分析中求积分一样,你可以通过公式快速算出需要求的积分,但是若明白积分是由极限定义的,之后再看积分将会是不一样的视角。
本文我将尝试说清楚为什么需要现装饰器、什么是装饰器、以及如何写一个简单的装饰器,但要彻底理解装饰器还要从函数开始说起,下面是有关函数的四个重要的概念,希望大家可以明白。
相信你在大多数文章中,至少也能知道例如「装饰器是装饰函数」,「在不修改函数代码的情况下增加额外功能」等核心概念,但首先要知道为什么函数能够被装饰。
例如在《流畅的Python》一书中,讲到函数的一开始就提出了一个概念,函数是一等对象
正如书中所说,在Python中一个函数既可以作为参数被传递,也能作为另一个函数的返回值,这也是函数可以被装饰的关键,在介绍装饰器之前,下面有必要通过简单的代码对这段话做一个更直观的理解。
1.1 函数中传递函数
函数中传递函数意思就是可以将函数当作变量来使用,我们来看一个简单的示例。
在下面的代码中,func1是一个普通的函数,接受两个参数a,b并返回他们的和。func2不一样的地方在于多接收了一个func参数,这个func变量需要是一个函数
def func1(a,b): print(f"函数 {func1.__name__} 正在执行") return a + b def func2(func,c,d): print(f"函数 {func2.__name__} 正在执行") return func(c,d)
现在让我们来执行func1
>>> func1(1,2)
函数 func1 正在执行 3
下面func1作为参数执行func2
>>> func2(func1,3,4)
函数 func2 正在执行
函数 func1 正在执行 7
可以看到,先执行func2,在func2接收到fun1后,再次执行func1并返回。注意这里的func1没有括号,它只不过是和a,b一样的参数被使用,理解这点后我们继续看下一个知识点。
1.2 函数中定义函数
在定义一个函数后,可以继续在函数内部定义新的函数。为了理解这点,我们来看下面简单的示例。
我们先定义了一个函数func1,并在func1中定义了func2,并在func1的内部调用了func2
def func1(): print(f"函数 {func1.__name__} 正在执行") def func2(): print(f"内部函数 {func2.__name__} 正在执行")
func2()
现在执行func1与func2看看会发生什么
>>> func1()
函数 func1 正在执行
内部函数 func2 正在执行 >>> func2()
------------------------------------------------
Traceback (most recent call last)
----> 1 func2() NameError: name 'func2' is not defined
可以看到,当执行func1时,会自动执行func2,但是如果单独执行func2,则提示未定义,说明func2只能在func1中被调用!
1.3 函数返回函数
最后是一个函数可以将另一个函数作为返回值返回的简单示例,在下面的代码中,我们先定义了一个外部函数func1(接受一个参数a),之后定义了一个内部函数func2(接受一个参数b)并返回a + b,最后将func2作为func1的返回值返回
def func1(a): print(f"函数 {func1.__name__} 正在执行") def func2(b): print(f"函数 {func2.__name__} 正在执行") return a + b return func2
需要注意的是,这里返回的func2没有括号,代表返回的是func2的地址!
>>> func3 = func1(1) >>> func3
函数 func1 正在执行
<function __main__.func1.<locals>.func2(b)> >>> func3(2)
函数 func2 正在执行 3
从上面的运行结果可以看到,当执行func1(1)后,返回的是func2的地址,并赋给func3,之后执行func3(2)才真正执行了内部函数func2!
现在我们就解决了上一小节的问题「将内部函数func2单独拿出来用」!
1.4 函数内省
函数内省是相对来说比较好理解的一个概念,在Python中的意思就是我们可以访问函数的部分属性,例如print函数,可以使用dir函数来查看其全部属性
>>> dir(print)
['__call__', '__class__', '__delattr__',
··· ··· '__subclasshook__', '__text_signature__']
现在可以查看其对应的属性
>>> print.__name__ 'print' >>> print.__call__
<method-wrapper '__call__' of builtin_function_or_method object at 0x7fddb8056b80> >>> print.__doc__ "print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)nnPrints the values to a stream, or to sys.stdout by default.nOptional keyword arguments:nfile: a file-like object (stream); defaults to the current sys.stdout.nsep: string inserted between values, default a space.nend: string appended after the last value, default a newline.nflush: whether to forcibly flush the stream."
函数内省了解到这个程度即可,我们会在2.3节再次提到这里的知识!
至此,我已经将接触装饰器之前必须要吃透的知识点介绍完毕,如果你觉得我讲解的不够清晰,可以查看任何其他教程或者书籍弄懂后再继续阅读。
现在终于可以来说说装饰器了,当然绝对不是直接告诉你一个写好的装饰器,而是我们一点一点去写一个简单的装饰器。
2.1 第一个装饰器
在下面的代码中,我们先定义了一个函数first_decorator,该函数接受函数为参数(如果不理解请查看本文 1.1 节),之后在内部定义了一个名为name_wrapper的内部函数(如果不理解请查看本文 1.2 节),最后返回以name_wrapper作为返回值(如果不理解请查看本文 1.3 节)
def first_decorator(func): def name_wrapper(): print(f"被装饰的函数 {func.__name__} 即将执行")
func()
print(f"被装饰的函数 {func.__name__} 执行完毕") return name_wrapper
这个函数的功能是,在执行被接收函数前后分别打印一段话,所以我们要再定义一个函数来测试效果
def add(): print("函数 add 正在执行 ")
这个fun1没有什么好说的,打印一段话。下面需要仔细看了,我们来执行这两段代码
>>> add = first_decorator(add)
>>> add()
被装饰的函数 add 即将执行
函数 add 正在执行
被装饰的函数 add 执行完毕
正如我们预料的一样,在执行add前后都有一段提示,但是如果每次使用first_decorator功能都需要先将add传递,之后再调用,来回写好几遍,实在太麻烦了!
因此这完全有更Pythonic的写法,也就是我们常见的装饰器形式,使用语法糖@,例如上面的例子和下面的写法等价
@first_decorator def add(): print("函数 add 正在执行 ")
用@+装饰器函数名字放在需要被装饰函数的上方即可,现在直接调用add即可实现装饰器的功能!
>>> add()
被装饰的函数 add 即将执行
函数 add 正在执行
被装饰的函数 add 执行完毕
相信看到这里,你应该明白装饰器@如何工作的,至少你在未来看到@时需要想到类似等价于add = first_decorator(add)一样的作用!
2.2 装饰器传参
上面仅是最简单的装饰器示例,在实际使用时
很自然的想法那就是加上参数呗,改起来也不难
@first_decorator def add(x,y): print("函数 add 正在执行 ")
print(f"{x} + {y} 的结果为{x+y}")
让我们来测试一下
>>> add(1,2)
-----------------------------------------------
Traceback (most recent call last)
<ipython-input-144-944f4051a32c> in <module> ----> 1 add(1,2) TypeError: name_wrapper() takes 0 positional arguments but 2 were given
不出意外的报错了,虽然我们给被装饰的函数加上了参数,但是在装饰器的内部函数name_wrapper()执行时并没有参数!
因此我们之前的代码可以这么改,使用*args, **kwargs也是非常常见的用法
def first_decorator(func): def name_wrapper(*args, **kwargs): print(f"被装饰的函数 {func.__name__} 即将执行")
func(*args, **kwargs)
print(f"被装饰的函数 {func.__name__} 执行完毕") return name_wrapper
现在我们再次使用这个装饰器即可返回我们预测的结果!
@first_decorator def add(x,y): print("函数 add 正在执行 ")
print(f"{x} + {y} 的结果为 {x+y}") >>> add(1,2)
被装饰的函数 add 即将执行
函数 add 正在执行 1 + 2 的结果为 3 被装饰的函数 add 执行完毕
本文的最后,还需要简单介绍一下在写装饰器时常用的functools模块。
还记得1.4节的函数内省相关知识吗?我们可以打印一个函数指向的内存地址或者名字等其他属性。
还是上面用到的add函数,我们都知道虽然被装饰了,但是功能上没有任何变化,依旧是计算两个数字的和,但是真的没有任何变化吗?下面让我们来观察一下
def add(x,y): print("函数 add 正在执行 ")
print(f"{x} + {y} 的结果为{x+y}") >>> print(add)
<function add at 0x7fddb9dd41f0>
>>>print(add.__name__)
add @first_decorator def add(x,y): print("函数 add 正在执行 ")
print(f"{x} + {y} 的结果为{x+y}") >>> print(add)
<function first_decorator.<locals>.name_wrapper at 0x7fddb9dd4e50> >>> print(add.__name__)
name_wrapper
可以看到,被装饰后,虽然功能上没有变化,但是它指向的是装饰器所定义的内部函数!这并不是我们希望看到的,比如若不同函数被两个装饰器装饰时则会出现一样的函数名!
幸运的是Python中的functools库可以轻松解决这个问题,只需要加上一行简单的代码就可以搞定!
import functools def first_decorator(func): @functools.wraps(func) def name_wrapper(*args, **kwargs): print(f"被装饰的函数 {func.__name__} 即将执行")
func(*args, **kwargs)
print(f"被装饰的函数 {func.__name__} 执行完毕") return name_wrapper @first_decorator def add(x,y): print("函数 add 正在执行 ")
print(f"{x} + {y} 的结果为{x+y}") >>> print(add)
<function add at 0x7fddb9dd4e50> >>> print(add.__name__)
add
可以看到此时函数名等函数属性均保留下来了,事实上@functools.wraps(func)通过functools.update_wrapper()将原函数中的部分内省属性固定,只传递部分关键参数来实现这个功能,感兴趣的读者可以自行进一步研究。
至此,我想你应该明白为什么需要现装饰器、什么是装饰器、以及如何写一个简单的装饰器,当你再次看到装饰器时,脑海中浮现的概念应该不仅仅是@。有关装饰器更高级的用法,以及一些常见、好用的装饰器,我将在装饰器的第二篇文章中进行介绍!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29