来源:早起Python
作者:刘早起
大家好,我是早起。
之前的文章中提到,很多人认为理解了装饰器的概念和用法后,会觉得自己的 Python 水平有一个明显的提高。
但很多教程在一上来就会给出装饰器的定义以及基本用法,例如你一定会在很多文章中看到例如代码运行时间计时器等相关常用装饰器。
直接从应用入手这样学习当然十分有效,但不是看过就忘就是似懂非懂的状态,因为装饰器从来就不是一个单独的概念,就像数学分析中求积分一样,你可以通过公式快速算出需要求的积分,但是若明白积分是由极限定义的,之后再看积分将会是不一样的视角。
本文我将尝试说清楚为什么需要现装饰器、什么是装饰器、以及如何写一个简单的装饰器,但要彻底理解装饰器还要从函数开始说起,下面是有关函数的四个重要的概念,希望大家可以明白。
相信你在大多数文章中,至少也能知道例如「装饰器是装饰函数」,「在不修改函数代码的情况下增加额外功能」等核心概念,但首先要知道为什么函数能够被装饰。
例如在《流畅的Python》一书中,讲到函数的一开始就提出了一个概念,函数是一等对象
正如书中所说,在Python中一个函数既可以作为参数被传递,也能作为另一个函数的返回值,这也是函数可以被装饰的关键,在介绍装饰器之前,下面有必要通过简单的代码对这段话做一个更直观的理解。
1.1 函数中传递函数
函数中传递函数意思就是可以将函数当作变量来使用,我们来看一个简单的示例。
在下面的代码中,func1是一个普通的函数,接受两个参数a,b并返回他们的和。func2不一样的地方在于多接收了一个func参数,这个func变量需要是一个函数
def func1(a,b): print(f"函数 {func1.__name__} 正在执行") return a + b def func2(func,c,d): print(f"函数 {func2.__name__} 正在执行") return func(c,d)
现在让我们来执行func1
>>> func1(1,2)
函数 func1 正在执行 3
下面func1作为参数执行func2
>>> func2(func1,3,4)
函数 func2 正在执行
函数 func1 正在执行 7
可以看到,先执行func2,在func2接收到fun1后,再次执行func1并返回。注意这里的func1没有括号,它只不过是和a,b一样的参数被使用,理解这点后我们继续看下一个知识点。
1.2 函数中定义函数
在定义一个函数后,可以继续在函数内部定义新的函数。为了理解这点,我们来看下面简单的示例。
我们先定义了一个函数func1,并在func1中定义了func2,并在func1的内部调用了func2
def func1(): print(f"函数 {func1.__name__} 正在执行") def func2(): print(f"内部函数 {func2.__name__} 正在执行")
func2()
现在执行func1与func2看看会发生什么
>>> func1()
函数 func1 正在执行
内部函数 func2 正在执行 >>> func2()
------------------------------------------------
Traceback (most recent call last)
----> 1 func2() NameError: name 'func2' is not defined
可以看到,当执行func1时,会自动执行func2,但是如果单独执行func2,则提示未定义,说明func2只能在func1中被调用!
1.3 函数返回函数
最后是一个函数可以将另一个函数作为返回值返回的简单示例,在下面的代码中,我们先定义了一个外部函数func1(接受一个参数a),之后定义了一个内部函数func2(接受一个参数b)并返回a + b,最后将func2作为func1的返回值返回
def func1(a): print(f"函数 {func1.__name__} 正在执行") def func2(b): print(f"函数 {func2.__name__} 正在执行") return a + b return func2
需要注意的是,这里返回的func2没有括号,代表返回的是func2的地址!
>>> func3 = func1(1) >>> func3
函数 func1 正在执行
<function __main__.func1.<locals>.func2(b)> >>> func3(2)
函数 func2 正在执行 3
从上面的运行结果可以看到,当执行func1(1)后,返回的是func2的地址,并赋给func3,之后执行func3(2)才真正执行了内部函数func2!
现在我们就解决了上一小节的问题「将内部函数func2单独拿出来用」!
1.4 函数内省
函数内省是相对来说比较好理解的一个概念,在Python中的意思就是我们可以访问函数的部分属性,例如print函数,可以使用dir函数来查看其全部属性
>>> dir(print)
['__call__', '__class__', '__delattr__',
··· ··· '__subclasshook__', '__text_signature__']
现在可以查看其对应的属性
>>> print.__name__ 'print' >>> print.__call__
<method-wrapper '__call__' of builtin_function_or_method object at 0x7fddb8056b80> >>> print.__doc__ "print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)nnPrints the values to a stream, or to sys.stdout by default.nOptional keyword arguments:nfile: a file-like object (stream); defaults to the current sys.stdout.nsep: string inserted between values, default a space.nend: string appended after the last value, default a newline.nflush: whether to forcibly flush the stream."
函数内省了解到这个程度即可,我们会在2.3节再次提到这里的知识!
至此,我已经将接触装饰器之前必须要吃透的知识点介绍完毕,如果你觉得我讲解的不够清晰,可以查看任何其他教程或者书籍弄懂后再继续阅读。
现在终于可以来说说装饰器了,当然绝对不是直接告诉你一个写好的装饰器,而是我们一点一点去写一个简单的装饰器。
2.1 第一个装饰器
在下面的代码中,我们先定义了一个函数first_decorator,该函数接受函数为参数(如果不理解请查看本文 1.1 节),之后在内部定义了一个名为name_wrapper的内部函数(如果不理解请查看本文 1.2 节),最后返回以name_wrapper作为返回值(如果不理解请查看本文 1.3 节)
def first_decorator(func): def name_wrapper(): print(f"被装饰的函数 {func.__name__} 即将执行")
func()
print(f"被装饰的函数 {func.__name__} 执行完毕") return name_wrapper
这个函数的功能是,在执行被接收函数前后分别打印一段话,所以我们要再定义一个函数来测试效果
def add(): print("函数 add 正在执行 ")
这个fun1没有什么好说的,打印一段话。下面需要仔细看了,我们来执行这两段代码
>>> add = first_decorator(add)
>>> add()
被装饰的函数 add 即将执行
函数 add 正在执行
被装饰的函数 add 执行完毕
正如我们预料的一样,在执行add前后都有一段提示,但是如果每次使用first_decorator功能都需要先将add传递,之后再调用,来回写好几遍,实在太麻烦了!
因此这完全有更Pythonic的写法,也就是我们常见的装饰器形式,使用语法糖@,例如上面的例子和下面的写法等价
@first_decorator def add(): print("函数 add 正在执行 ")
用@+装饰器函数名字放在需要被装饰函数的上方即可,现在直接调用add即可实现装饰器的功能!
>>> add()
被装饰的函数 add 即将执行
函数 add 正在执行
被装饰的函数 add 执行完毕
相信看到这里,你应该明白装饰器@如何工作的,至少你在未来看到@时需要想到类似等价于add = first_decorator(add)一样的作用!
2.2 装饰器传参
上面仅是最简单的装饰器示例,在实际使用时
很自然的想法那就是加上参数呗,改起来也不难
@first_decorator def add(x,y): print("函数 add 正在执行 ")
print(f"{x} + {y} 的结果为{x+y}")
让我们来测试一下
>>> add(1,2)
-----------------------------------------------
Traceback (most recent call last)
<ipython-input-144-944f4051a32c> in <module> ----> 1 add(1,2) TypeError: name_wrapper() takes 0 positional arguments but 2 were given
不出意外的报错了,虽然我们给被装饰的函数加上了参数,但是在装饰器的内部函数name_wrapper()执行时并没有参数!
因此我们之前的代码可以这么改,使用*args, **kwargs也是非常常见的用法
def first_decorator(func): def name_wrapper(*args, **kwargs): print(f"被装饰的函数 {func.__name__} 即将执行")
func(*args, **kwargs)
print(f"被装饰的函数 {func.__name__} 执行完毕") return name_wrapper
现在我们再次使用这个装饰器即可返回我们预测的结果!
@first_decorator def add(x,y): print("函数 add 正在执行 ")
print(f"{x} + {y} 的结果为 {x+y}") >>> add(1,2)
被装饰的函数 add 即将执行
函数 add 正在执行 1 + 2 的结果为 3 被装饰的函数 add 执行完毕
本文的最后,还需要简单介绍一下在写装饰器时常用的functools模块。
还记得1.4节的函数内省相关知识吗?我们可以打印一个函数指向的内存地址或者名字等其他属性。
还是上面用到的add函数,我们都知道虽然被装饰了,但是功能上没有任何变化,依旧是计算两个数字的和,但是真的没有任何变化吗?下面让我们来观察一下
def add(x,y): print("函数 add 正在执行 ")
print(f"{x} + {y} 的结果为{x+y}") >>> print(add)
<function add at 0x7fddb9dd41f0>
>>>print(add.__name__)
add @first_decorator def add(x,y): print("函数 add 正在执行 ")
print(f"{x} + {y} 的结果为{x+y}") >>> print(add)
<function first_decorator.<locals>.name_wrapper at 0x7fddb9dd4e50> >>> print(add.__name__)
name_wrapper
可以看到,被装饰后,虽然功能上没有变化,但是它指向的是装饰器所定义的内部函数!这并不是我们希望看到的,比如若不同函数被两个装饰器装饰时则会出现一样的函数名!
幸运的是Python中的functools库可以轻松解决这个问题,只需要加上一行简单的代码就可以搞定!
import functools def first_decorator(func): @functools.wraps(func) def name_wrapper(*args, **kwargs): print(f"被装饰的函数 {func.__name__} 即将执行")
func(*args, **kwargs)
print(f"被装饰的函数 {func.__name__} 执行完毕") return name_wrapper @first_decorator def add(x,y): print("函数 add 正在执行 ")
print(f"{x} + {y} 的结果为{x+y}") >>> print(add)
<function add at 0x7fddb9dd4e50> >>> print(add.__name__)
add
可以看到此时函数名等函数属性均保留下来了,事实上@functools.wraps(func)通过functools.update_wrapper()将原函数中的部分内省属性固定,只传递部分关键参数来实现这个功能,感兴趣的读者可以自行进一步研究。
至此,我想你应该明白为什么需要现装饰器、什么是装饰器、以及如何写一个简单的装饰器,当你再次看到装饰器时,脑海中浮现的概念应该不仅仅是@。有关装饰器更高级的用法,以及一些常见、好用的装饰器,我将在装饰器的第二篇文章中进行介绍!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近 ...
2024-12-29如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24