01、什么是企业架构
企业架构并不是一个新的概念,那企业架构是做什么的呢?企业架构是对真实世界企业的业务流程和IT设施的抽象描述,包括企业战略、组织、职能、业务流程、IT系统等。对于数据领域来讲企业抽象是流程和信息流。在做模型化时要分离出哪些部分呢?比如流程描述把企业看成价值链,所谓价值链就是把原材料开始经过一系列的加工,最终实现为客户提供有价值的产品。
我们做个类比,一个城市需要做整体规划,也会做功能区规划,最终是建筑物和工程局部设计。同理,企业做IT也需要一个架构,企业架构是由很多模块组成,比如财务、供应链、生产系统等,不同模块下也有很多功能,也需要细致的设计。
肯定了企业要做架构,我们来看一下企业架构的历史,信息化架构发展历史是非常久远的,上世纪80年代末开始,直到2011年左右,企业架构被广泛接受。
02、Togaf的 ADM方法论
下面重点介绍下Togaf 的ADM方法论,即所谓的“一备一中心和八个阶段”,主要表现在以下四个方面:
1.预备阶段:达成要建设企业架构的共识,建立架构的保障机制,比如企业架构委员会。
2.设计阶段:包含业务架构、信息系统架构、技术架构,其中信息系统架构包含数据和应用。不同的业务形态,对架构的要求是不同的。比如非智能制造的生产型企业的数据应用需求主要是经营业绩分析,采用传统数仓架构即可;而智能客户运营阶段的服务型企业,数据应用需求主要是基于行为数据为基础的数据驱动的操作层面的业务决策,采用Hadoop架构更节约成本。
3.迁移规划阶段。架构设计完后,制定实施计划,进行架构的执行和迁移规划。
4.架构治理阶段。PMO对项目实施过程进行治理,并对业务或技术变更进行控制。
下面我们来细化一下架构设计方面的内容。
业务架构:主要由业务分析师来完成,包括静态的企业战略方位图、企业组织结构图和企业职能分解图,以及动态的企业业务轨迹图和业务流程图。根据业务流程图可以知道应用系统如何建设,这里面需要的数据是数据架构所需要涉及的。
应用架构:表示的是应用系统与业务系统的映射关系。
数据架构:主要包括数据模型、数据实体-业务功能矩阵、数据实体-应用系统矩阵。企业的数据模型有利于更深入地了解企业数据,便于梳理企业数据资产,便于企业贯彻数据标准。数据实体-业务功能矩阵中可以确认数据由哪些部门负责和使用,有利于权限分配。数据实体-应用系统矩阵,梳理某一数据在不同系统中分布情况。
技术架构:主要包括环境与位置图、网络计算图、平台分解图等。
03、TOGAF构架
主要分为6个部分,静态内容方法论,提供功能模板、参考模型、在架构开发时在不同的阶段进行架构开发指引和技术、企业连续系列参考和架构能力框架。
01、成为智慧企业的必经之路
在我国的大部分人的概念中,BI最大的特点就是对经营业绩、经营成果进行分析。BI宏观业务分析,基于报表和可视化的分析。AI是微观业务分析,建立起对微观个体的洞察以及未来行为的预测。面向BI的数据应用要求数据在数据仓库汇总和标准化即可,因此源系统可以是“竖井”,即数据模型和数据标准在源系统可以不统一。AI最终服务的不是业务报表,而是建模完成后最终返回到业务系统,在一些流程节点当中需要用到算法模型的输出,在业务系统中落地。业务系统中的标准和分析系统中的标准是一体化打通的,因此对IT系统是更为严格的要求。既然要做转变,我们需要做什么事情呢?我们可以从四个方面考虑,分为数据战略、数据架构、算法架构、数据平台。
1. 数据战略:将数据素养纳入组织愿景、战略和核心流程,制定企业级的数据应用规划。
2. 数据架构:根据数据应用的需求,以领域驱动设计为方法论,构建企业级的数据模型及其他组件。企业的数据模型视应用的方向不同,不限于传统的主题模型和维度模型,还有可能是复杂网络模型等等。其中数据模型会分层,面向应用的上层数据主要服务于经营分析、客户洞察、风险识别等;底层的数据更贴近源系统。
3. 算法架构:根据数据应用的需求,使用数据挖掘的方法论,构建企业级的算法模型及其组件。企业的算法模型是应用的方向不同,分为统计模型、机器学习模型、自优化模型等。一般分为两层结构,上层是算法实现层,下层是特征工程层。我们主要讲一下服务行业的算法架构,主要包括决策类预测、识别类模型和业务优化分析。算法模型需要从视角、观点、层次三个方面进行划分,即主体-客体视角、成本-收益观点、微观-宏观层次。对于决策类模型,属于客体视角、成本-收益可比的微观层次模型。识别类模型,属于主体视角、成本-收益不可比的微观层次模型。业务优化分析,属于宏观层次模型。
4. 数据和算法平台:为了支持不同的数据架构和算法架构,则需要建立不同的数据和算法平台。比如传统服务于经营分析的报表是小数据量的,使用单机关系型数据库架构即可,不需要算法平台;而服务于违规交易识别的复杂网络的数据模型,需要进行深度的特征学习,因此数据平台中需要图数据库模块,而算法平台中需要支持并行深度学习。
02、如何能做到持续智能
传统企业由于组织隔离,导致交付时间长、难以支持创新。如果希望提高创新速度、敏捷开发、缩短交付时间,则需要组建数据科学家、开发人员和运营人员携手合作的混合团队。
03、持续智能的能力建设
这是ThoughtWorks所倡导的持续智能能力,主要分为:
1. 识别变化,采用程式化的方式自动识别外部环境的改变,比如在信贷风控中,实时监控数据漂移和数据异常,评估准入规则和风控模型的适用性。
2. 敏捷研究,提供建模人员敏捷工作环境,缩短建模中占时80%的低效特征构建和价值验证工作。
3. 智能建模,在算法模型需要调整时,基于既有的标签和画像特征,快速迭代算法模型。
4. 智能评估,模型上线后,配置好回流数据,可以对模型进行实时评估。
5. 敏捷测试,对模型的稳健性进行快速的全方位测试,缩短算法模型开发和算法模型上线的时间,避免算法模型崩溃导致的业务中断。
举个例子,疫情期间很多传统模型无法使用,针对风险变化快速建模的能力显得尤为重要。因为客群发生很大的漂移,需要公司快速建模的能力,尤其是针对敏捷研究,可以在短时间内快速上线。
DataPipline实现标签提取,特征工程,样本选取。打通生产环境和分析环境的数据标准,实现企业级的数据标准版本管理和算法模型版本管理。对于分析建模人员而言,实现入模特征的所用即所得,避免模型上线时重新编辑特征。
DataOps敏捷研究智能建模,可以实现数据与算法的融合和管理。建立起端到端的数据算法模型开发团队,避免开发语言转换、数据转换等无效率环节。
04、ThoughtWorks数字化愿景
为了实现构建智慧、敏捷、场景驱动的美好愿望,需要实现深入客户洞察、缩短产品上市时间、创造数字化收益等战略子目标。数据资产和算法能力是支持各个战略子目标的基础。而ThoughtWorks认为支持能力建设的五个数字化基础组件是必不可少的,分别是低摩擦运营模式、企业级平台战略、用户体验设计和数字化产品能力、智能驱动的决策机制、工程师文化和持续交付的思维。
数据资管出品
作者:研究猿
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16