CDA数据分析师 出品
作者: Lydia Dishman
编译: Mika
LinkedIn通过对用户数据的深入挖掘,列出了美国最具吸引力的40强企业。
查看完整TOP40名单:
https://lists.linkedin.com/2016/top-attractors/en/us
前20名中只有可口可乐,Under Armour和Black Rock不属于科技行业。如今,许多企业都认为自己属于科技领域,比如高盛集团的CEO,他将这家金融公司称为科技公司。
同时值得注意的是,编程已经成为各行各业最重要的工作技能。
正如LinkedIn报告所指出的那样,随着每家公司都在进行技术驱动化转型,能否吸引更多人才将决定企业的兴衰。
在美国最受欢迎的40强企业中,谷歌位居首位。除了提供免费餐饮和按摩等福利外,谷歌还拥有支持多样性和打造“完美”团队的企业文化,这也是为什么谷歌能让顶尖的人才趋之若鹜。一位前谷歌招聘人员估计,他在一年内曾查看了300万份简历。
那么在顶尖公司工作需要哪些技能呢?
毋庸置疑,科技知识是必备技能之一。
同时,大数据平台Paysa的CEO兼联合创始人Chris Bolte表示,对于那些不具备传统计算机科学的人才来说,还有另一个趋势。
“近年来呈现爆炸性发展的是深度学习,”Bolte说,“这是利用神经网络的机器学习和人工智能的一个分支。”
简单的说,神经网络就像计算机内部由相互连接的脑细胞构成网络,可以解析图像或视频等信号。它能以人类的模式学会识别模式和做出决策。
“深度学习扩展了许多层,比之前计算力达到的层次更深,”Bolte解释说,“有了互联网巨头创造的数据量加上计算的进步,因此这些深度学习方法能够更完整地模拟信号。”
作为更广泛的技能,人工智能和机器学习为各种技术人才提供了机会。
微软的资深机器学习招聘人员Amanda Papp透露:“我们的员工中并非每个人都必须有计算机科学博士学位。还有许多人具有物理、生物学等背景。”
Paysa的数据显示,在顶尖科技公司中,编程技能仍然非常关键。
在谷歌,6万名员工中近一半(45%)会Java,42%的人使用Python。只有13%的人会Git(开源软件开发),14%的人掌握云计算技能。
谷歌中83%员工拥有学士学位,7%的人毕业于斯坦福大学。其他的毕业院校包括科罗拉多矿业学院,卡内基梅隆大学和都柏林大学等。
排名第二的Salesforce公司有2万名员工,但员工的技能特点与谷歌略有不同。46%的人掌握云计算技术,39%的人精通敏捷方法(软件开发的项目管理)。
80%的员工具有学士学位,毕业院校主要包括加州大学伯克利分校,东南大学,亚利桑那州立大学和伊利诺伊大学厄巴纳分校等学校。
在Facebook,熟练掌握编程语言至关重要。Paysa的数据显示,Facebook中46%的员工使用Java,44%的人使用Python。其他技能包括C ++,分布式系统,算法和机器学习等。
与前两家公司类似,大多数员工(84%)拥有学士学位,但同时42%的员工也拥有硕士学位。最近的一项研究表明,越来越多的雇主更青睐具有高学历的人才,这也证明了这点。
但苹果并不太推崇员工具备高学历。苹果公司的10万名员工中有71%具有学士学位,28%的员工并没有学位。这在一定程度上是因为,并非所有员工都在Cupertino总部从事开发工作。
苹果公司员工掌握的普遍技能也可以看出这点,其中软件开发占28%,其次是Java占27%。
排在第五位的是亚马逊,这家电子商务巨头从西雅图附近的华盛顿大学吸引了大量人才。其中83%的员工具有学士学位,超过一半(57%)的员工精通Java,45%掌握软件开发技能。
令人惊讶的是,作为为众多网站提供服务的公司而言,只有不到四分之一(21%)的人精通网络服务技能。
尽管Facebook和谷歌等注重技术实力,但这些公司在招聘时并不只看重硬技能。
谷歌人事业务负责人Laszlo Bock称,他们在招聘时需要看重以下四个方面:
1. 一般的认知能力
不仅仅是智力,还包括吸收信息的能力。
2. 应急式领导力
当你看到问题时,你会介入并尝试解决它。之后当不再需要你时,能及时放下,能够放下权力也很重要。
3. 文化契合力
我们称之为Googleyness(谷歌精神),包括上进心和团队精神、倾听及沟通能力等特质。
4. 职位的相关专业知识
这些技能对于刚开始找工作的求职者来说尤为重要。
根据PayScale的一项调查显示,招聘人员正在寻找具备沟通,团队合作和领导力等软技能的求职者。多达60%的雇主认为初级求职者缺乏批判性思维和解决问题的能力。
PayScale研究的共同发起人,Future Workplace的研究主管Dan Schawbel 曾表示,“每天如果没有新的挑战就不完整,越早掌握这些技能,你就越有可能被聘用。“
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20