在国富如荷这些年的教学过程中,很多同学问到了一个问题:
在现实的商业世界中如何应用机器学习?
也就是说,虽然现在我们一直被各种算法文章和教程轰炸,但是关于企业中一个机器学习项目的“上下文”却总是缺失的。
今天CDA数据分析师教研副总监徐杨老师将给同学们介绍我们最近采集到的三个真实的企业机器学习项目,以让同学们更好地理解机器学习和数据科学在实践中是如何工作的。
这个项目来源于我们美国部门的反馈。这是一家娱乐行业的企业,由于保密协议的原因老师无法给出企业的名称。他们有一个专门的分析团队,在购物网站(如eBay)上搜索带有客户品牌的被盗或假冒商品。
在eBay上数以百万计的商品清单列表中,只有很小一部分是企业感兴趣的。于是分析团队上线了爬虫算法,抓取包含相关关键字的网页,并将网页图片存储在特定的文件夹中。每天,该团队都会登录到相关的门户网站,爬取并查看这些图片,以确定它们是否侵犯了企业的版权。这是一个非常昂贵却无聊的过程,昂贵在负责查看图片的人工成本,无聊在于这个查看工作本身没有太多技术含量却非常消耗工时。但是这个问题可以通过一点机器学习得到很大改善。
尴尬的是,现在很多很多讨论计算机视觉的文章都在关注一些"不务正业"的问题,例如 猫 vs 狗、汽车 vs 摩托车、手绘数字等等。但在这个项目中,我们必须在图像中寻找侵犯版权的东西。
决定使用哪种机器学习算法来解决问题通常很复杂,这个项目也不例外。一方面,我们有大量被标记为侵权或非侵权的数据,在这种情况下,很容易能看出这是一个有监督的分类问题。那么,我们考虑试一下神经网络算法?
另一方面,由于门户网站的设计,检索负面信息非常耗时(它不存储图像,只是一个链接),因此我们只有一个有限的数据集。此外,企业的徽标经常与其他企业的徽标一起出现在图像中(侵犯版权通常是很微妙的),并且足够深的神经网络很有可能会识别出类似商标的存在而不是单独某个公司的标志(就像神经网络通常会识别所有犬种而不仅仅是德国牧羊犬一样)。在这种情况下,关键是训练一个更浅的卷积神经网络来进行目标检测而不是分类。这阻止了网络学习 logo-general 特征并迫使它学习 logo-specific 特征。(这两个单词显然用英文来表述会更加准确,因此我们不给出翻译)
CNN(卷积神经网络)的算法本身是成熟的,那么这个项目的关键就在于生成训练集以供训练目标检测。它需要由来自原始训练集的大量不同角度和排列的图像组成,具有各种倾斜和对齐方式,每个图像都有一个包围框围绕着我们想要检测的对象(徽标)。在花费了相当大的精力完成训练集的工作后,这个项目的后续工作也顺利完成。
这个项目来源于与我们合作的一家企业,这是一家跨国零售连锁企业(同样是基于保密协议,这里不能给出企业名称)。由于这家企业的分支店铺遍布全球,包括一些不太安全的地区。因此需要构建一个算法,根据入室盗窃的历史实例生成入室盗窃的风险评分。
由于业务的性质,企业认为盗窃的风险随着周边地区的犯罪而增加,而不是由于商店的任何特定特征(易碎的窗户等)而增加。
该算法工具的目的不是直接防止盗窃,而是评估如何对整个商店组合分配固定预算,以减少盗窃损失。因此,算法输出的必须是更新每个安全设施的好处,或者说是推荐更新哪些安全设施,有点像推荐引擎。
与我们上一个示例类似,找出解决问题的关键是最大的挑战之一。分析团队首先尝试了生存分析,定制了 Cox Proportional Hazards 模型以接受多个事件。虽然它在洞察各种安全设施的防护性方面做得很好,但它对于地理因素的识别效果非常差,而地理区域因素正是客户想要识别的一个重要因素。
最后,分析团队决定为客户想要识别的每个因素构建单独的分类器(使用XGBoost),为每个时期设置固定的训练集日期范围,以解决较长时期的预测更有可能高估长期风险的问题。接下来,将这些因素导入回归模型来计算每个零售商店的预估损失,并使用该度量(结合地理度量)来生成具体的推荐。
Infinite Scroll,一般称为无限滚动模式,对于有很多相似条目需要展示的页面,可以用无限下拉的方式来避免用户通过点击下一页来获取更多内容。比如今日头条网站,打开后,可以一直向下滚动,当滚动到页面底部后,就会加载更多新闻条目。
之前,一个和我们美国部门有长期合作的网站转向了无限滚动模式,但对拉到底后接下来要显示哪篇文章发了愁。一开始,他们的分析团队提出的方法与强化学习非常相似——从10篇最受欢迎的文章中选择一篇或随机选择。
不幸的是,这个想法并没有给他们带来他们所希望的转化率,而无限滚动条也大大降低了他们的广告点击量(尽管这对用户来说是一种更好的体验)。
后来,分析团队使用词嵌入和用户嵌入,构建了一个协同过滤推荐引擎,为用户提供符合他们兴趣的文章,而不仅仅是最流行的。
这个项目最大的挑战不是选择哪个算法的问题,而是海量数据的处理问题:必须确保系统非常快速地返回推荐——这是无限滚动体验的本质。
另一个挑战是数据埋点和备份,因为用户的每个行为都有非常多个特征可以提取,因此需要找到一种方法来存储这些信息,且存储成本不会呈指数级增长。
分析团队决定按站点、类别和用户信息拆分模型,以减少嵌入矩阵的大小。同时还部署了各种降维技术以使其更易于管理,并密切监视系统以确定备份的理想截止日期。
总结
通过上述三个项目同学们可以发现,很多时候,算法选择和参数调参并不是企业中一个机器学习项目最重要的阶段。而客户需求、数据类型、计算速度、预测用法,甚至数据库优化都会影响到一个项目的成功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10