如果问:2021年哪种类型的人才最有“钱”途?
具有前沿技术背景的数字化人才一定榜上有名。
近些年来,我国人工智能AI,大数据和云计算等技术飞速发展,与此同时也催生了数字经济的蓬勃发展。如今,网络购物、在线外卖、手机支付等数字化消费场景早已进入我们的日常生活,反过来,数字经济的发展也催生大量新的就业机会。
波士顿咨询公司(BCG)发布的《数字经济下就业与人才研究报告》从就业人群、就业领域和就业方式三个方面分析了数字技术可能对就业生态产生的影响和变革,对于数字经济下的就业人群,拥有“特定专业技能(尤其是数字技术相关技能)”对获取中高端就业机会至关重要。
这份报告也预计,2035年中国整体数字经济规模将接近16万亿美元,总就业容量将达到4.15亿,如果不实施有效的人才战略,到时可能出现一个巨大的人才缺口,不只是在数量上,还有技能方面的缺口。
中国国家统计局的数据显示,2015年从事信息传输、软件和信息技术服务相关工作的人数约有350万。但是,其中拥有中高级专业技能数字人才的比例并不高,如果进一步看拥有人工智能、深度分析、虚拟现实和智能制造等前沿技术的数字人才更是少之又少。
数字人才,是指具备ICT(信息通信技术)专业技能和补充技能的人才,他们是大数据、“互联网+”、人工智能、智能制造等多个领域发展的“主力军”。
数字经济所需要的数字化技能分为三类:普通技能、专业技能和补充技能。
专业技能主要指开发产品和服务所需要数字技能,例如编程、网页设计、电子商务、以及最新的大数据分析和云计算等技能。补充技能是指利用特定的数字技能或平台辅助解决工作中的一些问题,例如处理复杂信息、与合作者和客户沟通、提供方案等等。
随着我国数字经济的蓬勃发展,互联网信息技术与传统产业的融合已成为推动我国经济增长的重要新动力,数字人才成为影响我国经济数字化转型进程的重要因素。
从细分行业的分布来看,近一半的数字人才来自于基础产业,其他数字人才主要分布在制造、金融、消费品、医药、企业服务、娱乐、教育等行业,其中制造业、金融业和消费品行业是数字人才从业人数最多的三大行业。
数字人才特征分布
从整体来看,拥有本科学位的数字人才占比最高,其次为硕士学位,拥有博士学位的 人才占比在3%以下,学历分布一定程度上反映出数字人才中研究型、分析型和管理型人才比较稀缺。
数字人才的专业背景主要集中在计算机科学、软件工程、电气和电子工程等技术类学科,工商管理专业也是数字人才的一大学科来源。
从职位等级的分布来看,数字人才结构比较均衡,初级职位的就业者占到数字人才的一半以上,高级专业人员与管理人员的比例也较高,但仍有提高的空间。
数字人才的必备技能中,对数据处理和分析的能力不容小觑。
随着数字化经济在国内不断深化,互联网、金融、零售、医疗、旅游等行业,都迫切需要专门从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才,数据分析已成职场标配技能,数据分析岗也变身为最热门职业之一。
在今天这个数字化环境下,人人都要懂点数据分析成了大趋势,数据分析早已成为职场人士的必备技能。做数据分析,能用数据撬动各项业务增长,你将同时拥有高薪、话语权和不可替代性。
CDA一直致力于数字化人才的转型与赋能,CDA数据分析师认证考试是经国标委发布的数字化人才标准,CDA(Certified Data Analyst),即“CDA数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证,旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20