作者:Allen
本文为「心中有数」CDA征文作品
首先“虚心”地立个flag,今年年底 LEVEL III 必过,两年通关CDA!(欧气满满)
其实,内心还是有点小担心,LEVEL III 要考案例实操,Python还用的不是很溜,加上还未正式开刷实操题,对题目的形式有些不确定。
但对于LEVEL I 和 LEVEL II 双双得A(得意),本人还是有些一得之见,在此给大家做个分享,希望能帮助到正在备考中的小伙伴们!
我在某互联网电商平台任职运营岗,在数据分析板块属于小白,虽有一定EXCEL的基础,但与平时工作中接触的用户行为数据、产品数据分析来讲,这点完全不够用,因此不得不提升自己的数据分析技能,于是一开始就在网上搜索自学,逐渐了解了大数据、数据库、机器学习这些专用名词,特别是被数字化转型影响,感觉这个时代如果不具备点数据思维和技能,就很快会被AI替代了。
另一方面,自己是业务出身,毕竟数据分析也是为业务服务,所以业务经验+专业技能,这样的发展来对我来讲更靠谱,所以下定决心学习,逼自己一把。
我是在19年开始自学数据分析,下定决心后,就以考取CDA认证作为最终目标(毕竟老牌认证)。
正式备考是从2020年开始,平均每天学习2小时左右,主要以看书(10本)、刷题(官方2000题)和辅导视频(官网课程)为主,到现在快两年了,痛并坚持着,坚持并难受着,但最终还好,LEVEL I 和 LEVEL II 都拿到了A的成绩,也算是享受到了一种来自内啡肽的快乐。
目前正在继续备战LEVEL III,希望能两年圆梦,噩梦结束,美梦成真!
CDA LEVEL I
首先说下LEVEL I:
我大概备考了三个月时间,在备考前,我首先是找官方考试大纲,通过整体把握了解各个模块的大概内容、关系和学习路径,做到心中有一个whole picture,这是LEVEL I的考试大纲:
整体来讲,LEVEL I 就是入门概念+基础技能+可视化,以业务描述性分析为目标,分为上图七个章节,大纲的安排是首先让考生先了解数据分析基本概念、方法和职业,然后以分析过程为路径,先了解什么是数据,数据应该怎么获取,获取后有哪些分析方法,如何将这些方法与业务结合,最后得出可视化的分析结果,思路清晰,学习可以有的放矢。对我来讲(非技术出身),最难的应该属于SQL数据库,毕竟有代码部分,但真正学起来上手还是较容易的,并且可以安慰的是考试不会考编程。
LEVEL I 备考中,
基本可框定两个范围:
LEVEL I 官方的推荐书籍都是选读,这是官方推荐目录:
结合我自身的经验推荐大家必读的有《SQL入门经典》和《统计学》两本就足够了。
CDA LEVEL II
其次说下LEVEL II:
LEVEL I 拿到A后信心满满,短暂休息了一个月,就开始了LEVEL II 的备考。
因为LEVEL II 涉及的教材和学习资料较多,并且还学习了Python,所以LEVEL II 备考我准备了大概4-5个月时间。
以下是LEVEL II 的考纲:
整体来讲,LEVEL II 为数据分析的进阶内容。以专业数据分析流程,分为了6个部分,数据的采集与处理,采集后对数据进行规范化储存管理,接着根据业务的需求进行标签体系的设计,对标签数据进行统计分析、建模,最终数字化工作方法部分为目前比较火热的数字化转型内容,侧重与业务分析流程。LEVEL II 中重难点部分在于统计分析与数据分析模型两部分,这两块设计的专业知识多,要求高的话会用到python进行分析,但值得庆幸的是,LEVEL II 也不考编程操作。
关于LEVEL II 的一些必读选读书籍,官方已经推荐出来,个人建议根据官方的要求学习即可,LEVEL II 主要就是在于花时间,除了啃书看视频,还得实操起来,方能拿到一个理想的成绩。
CDA LEVEL III
最后简单说下LEVEL III ,因为还在备考中,所以对于LEVEL III 的经验分享也只能是一个简单的开头,通过跟其他考生的咨询交流,也有一些重点学习方法。
整体来讲,LEVEL III 在于高级数据分析、数据挖掘、机器学习。
内容涵盖高级分析师的各项基础及进阶的知识点。基础的部分包括数据挖掘基础、高级数据预处理以及机器学习算法。进阶的部分则包括高级特征工程技术、自然语言处理与文本分析及深度学习。在机器学习实战上,涵盖当今较火的几个主题,包括自动机器学习、类别不平衡问题的处理模式、半监督式学习以及模型优化的方法。
LEVEL III 的复习大家推荐的是两本重点教材,《数据挖掘导论》和《数据挖掘:概念与技术》;其次还包括官方必读的几本《机器学习》、《精通特征工程》、《文本分析》等,如下图:
其次就是对模拟题中的案例操作题进行反复的练习,最好能用Python,之前有考生也用的SPSS Modeler这个工具,因为听说案例操作题是历年考过的真题,并且模板和套路都类似,只是需要用的算法可能会不太一样。在此也强烈种草李御玺老师讲的辅导视频课,幽默风趣,深入浅出,对我来讲学习起来很快乐!关于LEVEL III 的一些详细备考方法,得靠通过的大神们分享了。
磕数据的这两年,不仅让我学习了新的技能,而且真正帮助到了我的工作和发展,受益颇深。
这过程让我体会到世界变化之大,稍不留意,新技术可能又来了,无论是企业还是个人,在数字化的潮流中只能勇往直前,只要有这份信念,相信你也能成功上岸!
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16在数据科学领域,探索实习机会是一个理想的学习和成长方式。实习不仅可以提供宝贵的实践经验,还能帮助学生发展关键的数据分析技 ...
2024-12-16在当今信息驱动的时代,数据分析不仅成为了企业决策的重要一环,还催生了各种职业机会。从技术到业务,数据分析专业的就业岗位种 ...
2024-12-16在现代企业中,数据分析师被誉为“数据探险家”,他们通过揭示隐藏在数据背后的故事,帮助公司优化业务策略和做出明智的决策。然 ...
2024-12-16在大数据崛起的时代,数据分析师被誉为企业的“幕后英雄”。他们通过解读数据,揭示隐藏的真相,为企业战略提供重要的指导。这份 ...
2024-12-16在这个信息大爆炸的时代,数据分析师成为了企业中的“福尔摩斯”,他们能够从庞杂的数据中提取关键洞察,为业务发展提供坚实支持 ...
2024-12-16在这个数据为王的现代社会,数据分析师如同企业的导航员,洞悉数据背后所隐藏的商业机会和战略优势。然而,成为一名优秀的数据分 ...
2024-12-16