作者:amitvkulkarni
CDA数据分析师编译
对于任何评估来说,最难的是保持简单易操作,在数据科学中也是如此。在任何数据科学项目中,细化数据、微调模型、部署它们的迭代过程都是一个持续的过程。随着工具、算法的进步,以及随着 MLOps 的出现,事情变得容易了很多,而且未来也会继续发展——技术会优化自己。
业务方面呢?说服客户相信使用先进工具和技术构建的复杂模型的预测能力有多容易?客户是否愿意为项目提供资金并信任我们模型的建议?好吧,不妨试着解释模型的 ROC 曲线,试着用特异性和敏感性指标来说服客户——你会看到的只是眼球在滚动。
但是,如果我们能够在没有复杂指标和技术术语的情况下回答业务问题呢?那么,我们就可能有机会从业务部门那里获得支持。在本文中,我们将看到一个用例,在该用例中,我们仍将构建我们的模型,但以不同的方式对其进行解释——业务方式。
使用 ML 模型提取商业价值的方法
在这篇博客中,我们将探索十分位数的使用,了解各种评估图,如累积增益图和提升图等,以评估 ML 模型的商业价值。该方法将帮助我们解释 ML 模型的预测能力,并使解释模型结果变得很简单。这些图表和指标将使企业能够更有信心地做出明智的决策。
我们将在本文中探索以下主题。
我们将使用来自 UCI 机器学习存储库的公开可用的银行数据 集, zip 文件中有四个数据集,但我们感兴趣的是*bank-additional-full.csv。*所有的属性信息都可以在上面的 URL 中找到。数据来自直接营销电话联系客户,以评估客户是否有兴趣订阅银行定期存款。如果订阅,则为 Yes,否则为 No。本文讨论的是如何评估 ML 模型的商业价值。
让我们加载数据并查看一下以便更好的理解数据。
import wget import zipfile import pandas as pd import numpy as np
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/00222/bank-additional.zip' wget.download(url)
zf = zipfile.ZipFile('bank-additional.zip')
df= pd.read_csv(zf.open('bank-additional/bank-additional-full.csv'), sep=';')
我们可以进行完整的EDA/特征工程/选择重要变量然后构建模型,但为了简单起见,我们将选择很少的变量进行模型构建。
df= df[['y', 'duration', 'campaign', 'pdays', 'previous', 'euribor3m']]
此外,还需要更进一步地探索数据,将目标变量转换为分类变量并对其进行编码。
df.y[df.y == 'yes'] = 'term deposit' df.y = pd.Categorical(df.y)
df['y'] = df.y.cat.codes
df.info()
RangeIndex: 41188 entries, 0 to 41187 Data columns (total 6 columns): # Column Non-Null Count Dtype — —— ————– —– 0 y 41188 non-null int8 1 duration 41188 non-null int64 2 campaign 41188 non-null int64 3 pdays 41188 non-null int64 4 previous 41188 non-null int64 5 euribor3m 41188 non-null float64 dtypes: float64(1), int64(4), int8(1) memory usage: 1.6 MB
df.head() y duration campaign pdays previous euribor3m 0 261 1 999 0 4.857 0 149 1 999 0 4.857 0 226 1 999 0 4.857 0 151 1 999 0 4.857 0 307 1 999 0 4.857
df.describe() y duration campaign pdays previous euribor3m count 41188.000000 41188.000000 41188.000000 41188.000000 41188.000000 41188.000000 mean 0.112654 258.285010 2.567593 962.475454 0.172963 3.621291 std 0.316173 259.279249 2.770014 186.910907 0.494901 1.734447 min 0.000000 0.000000 1.000000 0.000000 0.000000 0.634000 25% 0.000000 102.000000 1.000000 999.000000 0.000000 1.344000 50% 0.000000 180.000000 2.000000 999.000000 0.000000 4.857000 75% 0.000000 319.000000 3.000000 999.000000 0.000000 4.961000 max 1.000000 4918.000000 56.000000 999.000000 7.000000 5.045000
模型构建以提取商业价值
Step1:定义自变量和目标变量
y = df.y X = df.drop('y', axis = 1)
Step2:将数据集拆分为训练集和测试集,其中测试大小为整个数据集的 20%
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 2021)
Step3:建立逻辑回归模型
from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression # Logistic regression model clf_glm = LogisticRegression(multi_class = 'multinomial', solver = 'newton-cg').fit(X_train, y_train)
prob_glm = clf_glm.predict_proba(X_test)
max_prob_glm = round(pd.DataFrame(np.amax(prob_glm, axis=1), columns = ['prob_glm']),2)
至此,我们已经建立了模型,并在测试数据上对其进行了评分(预测),这为我们提供了每个观察结果的预测概率。
生成十分位数
简单地说,十分位数把数据进行分箱。所以,我们将所有预测的概率分成十组,并对它们进行排名,这意味着最高的预测概率将在十分之一,最低的设置将在十分之一。我们将使用pandas的 cut() 函数拆分数据。
下面的代码行创建一个名为Decile_rank_glm的新列, 它保存每个预测记录的排名。
max_prob_glm['Decile_rank_glm'] = pd.cut(max_prob_glm['prob_glm'], 10, labels = np.arange(10,0, -1))
prob_glm Decile_rank_glm 0 0.99 1 1 0.59 9 2 0.96 1 3 0.83 4 4 0.85 4 ... ... ... 8233 0.98 1 8234 0.98 1 8235 0.99 1 8236 0.99 1 8237 0.93 2
注: 0.99 的概率为 1,0.93 为 2,0.85 为 4,0.59 为 9。我们将在后面的部分中看到此结果的可视化。
模型评估以提取商业价值
我们构建的任何模型都必须与基线模型进行比较,以评估模型的性能。让我们在下面进一步探讨这一点。
我们将在累积增益图中可视化上述模型。展现逻辑回归的性能。
kds.metrics.plot_cumulative_gain(y_test.to_numpy(), prob_glm[:,1])
累积增益图 | 商业价值机器学习模型
到目前为止看起来不错,图在预期线上,逻辑回归模型介于我们讨论的两个极端模型之间。
累积增益图的见解:
到目前为止,我们已经讨论了模型、十分位数及其性能比较。让我们在十分位数级别上进一步探讨这一点,以更清楚地了解发生了什么以及我们如何更好地解释这个过程。我们将在视觉效果的帮助下进行分析,这使它变得更加容易。kds 包有一个非常好的功能,可以在一行代码中生成所有指标报告。
kds.metrics.report(y_test, prob_glm[:,1])
metrics report | Business value ML model
让我们了解这些情节中的每一个。需要注意的是,所有图的 x 轴都是十分位数。
让我们用随机森林再构建一个模型,看看结果如何。
clf_rf = RandomForestClassifier().fit(X_train, y_train)
prob_rf = clf_rf.predict_proba(X_test)
max_prob_rf = pd.DataFrame(np.amax(prob_rf, axis=1), columns = ['prob_rf'])
max_prob_rf['Decile_rank_rf'] = pd.cut(max_prob_rf['prob_rf'], 10, labels = np.arange(10,0, -1))
kds.metrics.plot_cumulative_gain(y_test.to_numpy(), prob_rf[:,1])
kds.metrics.report(y_test, prob_rf[:,1])
img
观察:
业务场景
建议控制:在某些情况下,客户有业务需求,即应始终生成最少 X 条建议。在这种情况下,我们可以通过考虑前 3 个十分位数而不是 2 个十分位数来获得更大的建议,并且还可以对其他记录进行精细控制。
衡量市场反应:推荐后分析和市场反应很容易衡量。例如,从前一点,我们可以单独跟踪来自十分位数 3 的所有额外推荐的表现。来自十分位数 3 的额外推送是否产生了任何影响(正面或负面)?
优化营销支出:通过关注前 20-30% 的人群,企业可以节省时间、资源和金钱。以避免这些时间、资源和金钱会花费在无响应者或定位错误客户上。
结语
技术有其一席之地,企业也有发言权。归根结底,这一切都与技术带来的商业价值有关。当这些收益用商业术语来解释时,它总是会更有效。它不仅有助于从业务中获得信心,而且还开辟了新的探索机会。
请注意,我们构建了两个分类模型,但没有研究我们通常为此类模型所做的 ROC 曲线、混淆矩阵、精度、召回率和其他标准指标。强烈建议跟踪和测量这些指标以评估模型的性能,然后遵循此文中的十分位数方法。根据目标受众和目标,使用最适合目标的方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
企业名称:青鸟软件 招聘岗位:AI数据标注(实习生) 需求数量:30 工作城市:青岛 岗位职责: 1. 负责收集、整 ...
2025-01-21在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31