作者:amitvkulkarni
CDA数据分析师编译
对于任何评估来说,最难的是保持简单易操作,在数据科学中也是如此。在任何数据科学项目中,细化数据、微调模型、部署它们的迭代过程都是一个持续的过程。随着工具、算法的进步,以及随着 MLOps 的出现,事情变得容易了很多,而且未来也会继续发展——技术会优化自己。
业务方面呢?说服客户相信使用先进工具和技术构建的复杂模型的预测能力有多容易?客户是否愿意为项目提供资金并信任我们模型的建议?好吧,不妨试着解释模型的 ROC 曲线,试着用特异性和敏感性指标来说服客户——你会看到的只是眼球在滚动。
但是,如果我们能够在没有复杂指标和技术术语的情况下回答业务问题呢?那么,我们就可能有机会从业务部门那里获得支持。在本文中,我们将看到一个用例,在该用例中,我们仍将构建我们的模型,但以不同的方式对其进行解释——业务方式。
使用 ML 模型提取商业价值的方法
在这篇博客中,我们将探索十分位数的使用,了解各种评估图,如累积增益图和提升图等,以评估 ML 模型的商业价值。该方法将帮助我们解释 ML 模型的预测能力,并使解释模型结果变得很简单。这些图表和指标将使企业能够更有信心地做出明智的决策。
我们将在本文中探索以下主题。
我们将使用来自 UCI 机器学习存储库的公开可用的银行数据 集, zip 文件中有四个数据集,但我们感兴趣的是*bank-additional-full.csv。*所有的属性信息都可以在上面的 URL 中找到。数据来自直接营销电话联系客户,以评估客户是否有兴趣订阅银行定期存款。如果订阅,则为 Yes,否则为 No。本文讨论的是如何评估 ML 模型的商业价值。
让我们加载数据并查看一下以便更好的理解数据。
import wget import zipfile import pandas as pd import numpy as np
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/00222/bank-additional.zip' wget.download(url)
zf = zipfile.ZipFile('bank-additional.zip')
df= pd.read_csv(zf.open('bank-additional/bank-additional-full.csv'), sep=';')
我们可以进行完整的EDA/特征工程/选择重要变量然后构建模型,但为了简单起见,我们将选择很少的变量进行模型构建。
df= df[['y', 'duration', 'campaign', 'pdays', 'previous', 'euribor3m']]
此外,还需要更进一步地探索数据,将目标变量转换为分类变量并对其进行编码。
df.y[df.y == 'yes'] = 'term deposit' df.y = pd.Categorical(df.y)
df['y'] = df.y.cat.codes
df.info()
RangeIndex: 41188 entries, 0 to 41187 Data columns (total 6 columns): # Column Non-Null Count Dtype — —— ————– —– 0 y 41188 non-null int8 1 duration 41188 non-null int64 2 campaign 41188 non-null int64 3 pdays 41188 non-null int64 4 previous 41188 non-null int64 5 euribor3m 41188 non-null float64 dtypes: float64(1), int64(4), int8(1) memory usage: 1.6 MB
df.head() y duration campaign pdays previous euribor3m 0 261 1 999 0 4.857 0 149 1 999 0 4.857 0 226 1 999 0 4.857 0 151 1 999 0 4.857 0 307 1 999 0 4.857
df.describe() y duration campaign pdays previous euribor3m count 41188.000000 41188.000000 41188.000000 41188.000000 41188.000000 41188.000000 mean 0.112654 258.285010 2.567593 962.475454 0.172963 3.621291 std 0.316173 259.279249 2.770014 186.910907 0.494901 1.734447 min 0.000000 0.000000 1.000000 0.000000 0.000000 0.634000 25% 0.000000 102.000000 1.000000 999.000000 0.000000 1.344000 50% 0.000000 180.000000 2.000000 999.000000 0.000000 4.857000 75% 0.000000 319.000000 3.000000 999.000000 0.000000 4.961000 max 1.000000 4918.000000 56.000000 999.000000 7.000000 5.045000
模型构建以提取商业价值
Step1:定义自变量和目标变量
y = df.y X = df.drop('y', axis = 1)
Step2:将数据集拆分为训练集和测试集,其中测试大小为整个数据集的 20%
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 2021)
Step3:建立逻辑回归模型
from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression # Logistic regression model clf_glm = LogisticRegression(multi_class = 'multinomial', solver = 'newton-cg').fit(X_train, y_train)
prob_glm = clf_glm.predict_proba(X_test)
max_prob_glm = round(pd.DataFrame(np.amax(prob_glm, axis=1), columns = ['prob_glm']),2)
至此,我们已经建立了模型,并在测试数据上对其进行了评分(预测),这为我们提供了每个观察结果的预测概率。
生成十分位数
简单地说,十分位数把数据进行分箱。所以,我们将所有预测的概率分成十组,并对它们进行排名,这意味着最高的预测概率将在十分之一,最低的设置将在十分之一。我们将使用pandas的 cut() 函数拆分数据。
下面的代码行创建一个名为Decile_rank_glm的新列, 它保存每个预测记录的排名。
max_prob_glm['Decile_rank_glm'] = pd.cut(max_prob_glm['prob_glm'], 10, labels = np.arange(10,0, -1))
prob_glm Decile_rank_glm 0 0.99 1 1 0.59 9 2 0.96 1 3 0.83 4 4 0.85 4 ... ... ... 8233 0.98 1 8234 0.98 1 8235 0.99 1 8236 0.99 1 8237 0.93 2
注: 0.99 的概率为 1,0.93 为 2,0.85 为 4,0.59 为 9。我们将在后面的部分中看到此结果的可视化。
模型评估以提取商业价值
我们构建的任何模型都必须与基线模型进行比较,以评估模型的性能。让我们在下面进一步探讨这一点。
我们将在累积增益图中可视化上述模型。展现逻辑回归的性能。
kds.metrics.plot_cumulative_gain(y_test.to_numpy(), prob_glm[:,1])
累积增益图 | 商业价值机器学习模型
到目前为止看起来不错,图在预期线上,逻辑回归模型介于我们讨论的两个极端模型之间。
累积增益图的见解:
到目前为止,我们已经讨论了模型、十分位数及其性能比较。让我们在十分位数级别上进一步探讨这一点,以更清楚地了解发生了什么以及我们如何更好地解释这个过程。我们将在视觉效果的帮助下进行分析,这使它变得更加容易。kds 包有一个非常好的功能,可以在一行代码中生成所有指标报告。
kds.metrics.report(y_test, prob_glm[:,1])
metrics report | Business value ML model
让我们了解这些情节中的每一个。需要注意的是,所有图的 x 轴都是十分位数。
让我们用随机森林再构建一个模型,看看结果如何。
clf_rf = RandomForestClassifier().fit(X_train, y_train)
prob_rf = clf_rf.predict_proba(X_test)
max_prob_rf = pd.DataFrame(np.amax(prob_rf, axis=1), columns = ['prob_rf'])
max_prob_rf['Decile_rank_rf'] = pd.cut(max_prob_rf['prob_rf'], 10, labels = np.arange(10,0, -1))
kds.metrics.plot_cumulative_gain(y_test.to_numpy(), prob_rf[:,1])
kds.metrics.report(y_test, prob_rf[:,1])
img
观察:
业务场景
建议控制:在某些情况下,客户有业务需求,即应始终生成最少 X 条建议。在这种情况下,我们可以通过考虑前 3 个十分位数而不是 2 个十分位数来获得更大的建议,并且还可以对其他记录进行精细控制。
衡量市场反应:推荐后分析和市场反应很容易衡量。例如,从前一点,我们可以单独跟踪来自十分位数 3 的所有额外推荐的表现。来自十分位数 3 的额外推送是否产生了任何影响(正面或负面)?
优化营销支出:通过关注前 20-30% 的人群,企业可以节省时间、资源和金钱。以避免这些时间、资源和金钱会花费在无响应者或定位错误客户上。
结语
技术有其一席之地,企业也有发言权。归根结底,这一切都与技术带来的商业价值有关。当这些收益用商业术语来解释时,它总是会更有效。它不仅有助于从业务中获得信心,而且还开辟了新的探索机会。
请注意,我们构建了两个分类模型,但没有研究我们通常为此类模型所做的 ROC 曲线、混淆矩阵、精度、召回率和其他标准指标。强烈建议跟踪和测量这些指标以评估模型的性能,然后遵循此文中的十分位数方法。根据目标受众和目标,使用最适合目标的方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31