来源:早起Python
作者:刘早起
本文将基于东京奥运会奖牌榜数据,使用 pandas 进行数据分析可视化实战(文末可以下载数据与源码)
首先是奥运会奖牌数据的获取,虽然有很多接口提供数据,但是通过奥运会官网拿到的数据自然是最可靠的
通过对东京奥运会官网奖牌榜的页面分析,发现其表格在前端是通过 嵌入的,所以可以使用 pandas.read_html() 轻松读取
之后再读取本地分日奖牌数据并将国家ID进行匹配
注意到上面的 df1 列名并没有完整,所以可以使用 rename 函数修改指定列的名称
既然 df2 有时间列,为了方便后面分析,自然要检查一下其类型
可以看到,获奖时间列虽然没有缺失值但其并不是pandas支持的时间类型。
好在修改列属性并不是什么困难的事情,一行代码轻松搞定(7-12)
通过观察可以发现,df2并没有 国家名称 列,但是其与 df1 有一个共同列 国家id
为了给 df2 新增一列 国家名称 列,一个自然的想法就是通过 国家id 列将两个数据框进行合并,在 pandas 中实现,也不是什么困难的事情
现在 df2 就调整的差不多了(由于源数据问题,部分获奖时间与真实时间有一定误差),下面开始进行分析
下面对 df2 进行一些统计分析,计算每个国家的奖牌总数(也就是出现次数),并查看奖牌数前5名,结果可以用 df1 进行验证
看完国家奖牌排行,接下来计算获得奖牌最多的运动员(注意:仅统计单人项目)
这里无需使用分组功能,只需要按照运动员姓名列进行频率统计即可。
下面筛选出全部乒乓球的获奖信息,这里的筛选有多种写法,你能写出几种?
现在查看各国在各项目上的奖牌详情,下面是通过透视得到的答案,但你会使用使用数据分组功能吗?
在上一题的基础上,查询中国队的获奖牌详情,注意是查询而不是筛选,所以使用上上一题的方法将会报错
如何将上一题的结果进一步突出展示,可以使用 pandas 中的 style
上面说到,df2 的获奖时间部分并不准确(主要体现在小时上),所以我们干脆将时间精确到天,这里可以使用 map 对一整列进行操作
接下来,让我们统计每天产生的奖牌总数
可以看到,最后一天产生的奖牌数量最多
再来查看不同项目在不同国家的分布情况,同样也可以使用分组功能实现
接下来让我们计算中国每日总奖牌数量,你能想到该如何实现吗?
最后,计算前十名各国每日奖牌数量统计,注意:对于第一天没有数据的国家用0填充,其余时间的缺失值用上一日数据填充。
这看似简单的问题,涉及的 pandas 操作还真不少!
首先制作奖牌排行榜
上图使用 matplotlib 制作,看起来不错,但代码量也确实不少
接下来使用 pyecharts 绘制上一题奖牌榜各奖牌的细分
使用 pyecharts 的好处就是使用封装好的方法,代码量相对较少
现在进一步绘制中国队的奖牌分布
同样使用 pyecharts ,实际行代码搞定
现在绘制奖牌分布的热力地图
使用 pyecharts 绘制,绘图代码不多,但是调整国家中英文映射字典是一件痛苦的事情
最后绘制每日奖牌榜前十奖牌数量的动态图,使用 matplotlib 或 pyecharts 均得不到较好的效果,所以这里使用另一个第三方库 bar_chart_race 进行绘制
以上就是基于 2020年东京奥运会 数据进行的一系列数据分析可视化流程,基本涉及到利用 Pandas 进行数据分析的主要操作,是一份不可多得的简单易懂、利于探索的数据集。
df1 = pd.read_html("https://olympics.com/tokyo-2020/olympic-games/zh/results/all-sports/medal-standings.htm")[0]
df2 = pd.read_csv("东京奥运会奖牌分日数据.csv")
修改列名
df1.rename(columns={'Unnamed: 2':'金牌数', 'Unnamed: 3':'银牌数', 'Unnamed: 4':'铜牌数'},inplace=True)
数据类型查看与修改
df2.info()
df2['获奖时间'] = pd.to_datetime(df2['获奖时间'])
数据合并
temp = pd.merge(df1,df2,on = '国家id') #先合并 temp['获奖时间'] = pd.to_datetime(temp['获奖时间'])#修改类型 temp = temp.sort_values(by=['获奖时间','奖牌类型'], ascending=True, ignore_index=True)#排序,和df2一样 df2['国家'] = temp['国家奥委会']#赋值
数据分组
数据统计
数据筛选
数据透视
pd.pivot_table(df2,values = ['奖牌类型'],index = ['国家','运动类别'],aggfunc = 'count')
数据查询
result.query("国家 == ['中国']")
个性化查看
(result.query("国家 == ['中国']")
.style
.bar(subset=['奖牌类型'],color='skyblue'))
数据格式化
def time_format(x): return x.strftime("%m月%d日")
df2['获奖时间'] = df2['获奖时间'].map(time_format)
分组统计
df2.groupby("获奖时间")['国家'].count().sort_values()
数据透视
pd.pivot_table(df2,values = ['奖牌类型'],index = ['运动类别','国家'],aggfunc = 'count')
数据计算
pd.pivot_table(df2,values = ['奖牌类型'],index = ['获奖时间','国家'],aggfunc = 'count').query("国家 == ['中国']").cumsum()
数据计算
data = pd.pivot_table(df2,values = ['奖牌类型'],index = ['获奖时间','国家'],aggfunc = 'count').query("国家 == ['美国', '中国', '日本', '英国', 'ROC', '澳大利亚', '荷兰', '法国', '德国', '意大利']") data = data.unstack() data.columns = data.columns.get_level_values(1) data.columns.name = None data = data.cumsum() data = data.fillna(axis=0,method='ffill').fillna(0) data
条形图
堆叠图
环形图
地图
动态图
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16