本章给大家演示一下在实际工作中如何结合 Pandas 库和 openpyxl 库来自动化生成报表。假设我们现在有如图 1 所示的数据集。
(图1)
现在需要根据这份数据集来制作每天的日报情况,主要包含以下 3 个方面。
接下来分别实现。
我们先用 Pandas 库对数据进行计算处理,得到各指标的同/环比情况,具体实现代码如下。
#导入文件 import pandas as pd
df = pd.read_excel(r'D:Data-Scienceshareexcel-python 报表自动化
sale_data.xlsx') #构造同时获取不同指标的函数 def get_data(date): create_cnt = df[df['创建日期'] == date]['order_id'].count()
pay_cnt = df[df['付款日期'] == date]['order_id'].count()
receive_cnt = df[df['收货日期'] == date]['order_id'].count()
return_cnt = df[df['退款日期'] == date]['order_id'].count() return create_cnt,pay_cnt,receive_cnt,return_cnt #假设当日是 2021-04-11 #获取不同时间段的各指标值 df_view = pd.DataFrame([get_data('2021-04-11')
,get_data('2021-04-10')
,get_data('2021-04-04')]
,columns = ['创建订单量','付款订单量','收货订单量','退款订单量']
,index = ['当日','昨日','上周同期']).T
df_view['环比'] = df_view['当日'] / df_view['昨日'] - 1 df_view['同比'] = df_view['当日'] / df_view['上周同期'] - 1 df_view
运行上面代码会得到如图 2 所示结果。
(图2)
上面只是得到了各指标的同/环比绝对数值,但是日报在发出去之前一般都要做一些格式调整,比如调整字体。而格式调整需要用到 openpyxl 库,我们将 Pandas 库中DataFrame 格式的数据转化为适用 openpyxl 库的数据格式,具体实现代码如下。
from openpyxl import Workbook from openpyxl.utils.dataframe import dataframe_to_rows #创建空工作簿 wb = Workbook()
ws = wb.active #将 DataFrame 格式数据转化为 openpyxl 格式 for r in dataframe_to_rows(df_view,index = True,header = True):
ws.append(r)
wb.save(r'D:Data-Scienceshareexcel-python 报表自动化核心指标_原始.xlsx')
运行上面代码会得到如图 3 所示结果,可以看到原始的数据文件看起来是很混乱的。
(图3)
接下来,对上面的原始数据文件进行格式调整,具体调整代码如下。
from openpyxl import Workbook from openpyxl.utils.dataframe import dataframe_to_rows from openpyxl.styles import colors from openpyxl.styles import Font from openpyxl.styles import PatternFill from openpyxl.styles import Border, Side from openpyxl.styles import Alignment
wb = Workbook()
ws = wb.active for r in dataframe_to_rows(df_view,index = True,header = True):
ws.append(r) #第 2 行是空的,删除第 2 行 ws.delete_rows(2) #给 A1 单元格进行赋值 ws['A1'] = '指标' #插入一行作为标题行 ws.insert_rows(1)
ws['A1'] = '电商业务方向 2021/4/11 日报' #将标题行的单元格进行合并 ws.merge_cells('A1:F1') #合并单元格 #对第 1 行至第 6 行的单元格进行格式设置 for row in ws[1:6]: for c in row: #字体设置 c.font = Font(name = '微软雅黑',size = 12) #对齐方式设置 c.alignment = Alignment(horizontal = "center") #边框线设置 c.border = Border(left = Side(border_style = "thin",color = "FF000000"),
right = Side(border_style = "thin",color = "FF000000"),
top = Side(border_style = "thin",color = "FF000000"),
bottom = Side(border_style = "thin",color = "FF000000")) #对标题行和表头行进行特殊设置 for row in ws[1:2]: for c in row:
c.font = Font(name = '微软雅黑',size = 12,bold = True,color = "FFFFFFFF")
c.fill = PatternFill(fill_type = 'solid',start_color ='FFFF6100') #将环比和同比设置成百分比格式 for col in ws["E":"F"]: for r in col:
r.number_format = '0.00%' #调整列宽 ws.column_dimensions['A'].width = 13 ws.column_dimensions['E'].width = 10 #保存调整后的文件 wb.save(r'D:Data-Scienceshareexcel-python 报表自动化核心指标.xlsx')
运行上面代码会得到如图 4 所示结果。
(图4)
可以看到各项均已设置成功。
我们同样先利用 Pandas 库处理得到当日各省份创建订单量的情况,具体实现代码如下。
df_province = pd.DataFrame(df[df['创建日期'] == '2021-04-11'].groupby('省份
')['order_id'].count())
df_province = df_province.reset_index()
df_province = df_province.sort_values(by = 'order_id',ascending = False)
df_province = df_province.rename(columns = {'order_id':'创建订单量'})
df_province
运行上面代码会得到如图 5 所示结果。
(图5)
在得到各省份当日创建订单量的绝对数值之后,同样对其进行格式设置,具体设置代码如下。
from openpyxl import Workbook from openpyxl.utils.dataframe import dataframe_to_rows from openpyxl.styles import colors from openpyxl.styles import Font from openpyxl.styles import PatternFill from openpyxl.styles import Border, Side from openpyxl.styles import Alignment from openpyxl.formatting.rule import DataBarRule
wb = Workbook()
ws = wb.active for r in dataframe_to_rows(df_province,index = False,header = True):
ws.append(r) #对第 1 行至第 11 行的单元格进行设置 for row in ws[1:11]: for c in row: #字体设置 c.font = Font(name = '微软雅黑',size = 12) #对齐方式设置 c.alignment = Alignment(horizontal = "center") #边框线设置 c.border = Border(left = Side(border_style = "thin",color = "FF000000"),
right = Side(border_style = "thin",color = "FF000000"),
top = Side(border_style = "thin",color = "FF000000"),
bottom = Side(border_style = "thin",color = "FF000000")) #设置进度条条件格式 rule = DataBarRule(start_type = 'min',end_type = 'max',
color="FF638EC6", showValue=True, minLength=None, maxLength= None)
ws.conditional_formatting.add('B1:B11',rule) #对第 1 行标题行进行设置 for c in ws[1]:
c.font = Font(name = '微软雅黑',size = 12,bold = True,color = "FFFFFFFF")
c.fill = PatternFill(fill_type = 'solid',start_color='FFFF6100') #调整列宽 ws.column_dimensions['A'].width = 17 ws.column_dimensions['B'].width = 13 #保存调整后的文件 wb.save(r'D:Data-Scienceshareexcel-python 报表自动化各省份销量情况.xlsx')
运行上面代码会得到如图6所示结果。
(图6)
一般用折线图反映某个指标的趋势情况,我们前面也讲过,在实际工作中一般用matplotlib 库或者其他可视化库进行图表绘制,并将其保存,然后利用 openpyxl 库将图表插入 Excel 中。
先利用 matplotlib 库进行绘图,具体实现代码如下。
%matplotlib inline import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]='SimHei'#解决中文乱码 #设置图表大小 plt.figure(figsize = (10,6))
df.groupby('创建日期')['order_id'].count().plot()
plt.title('4.2 - 4.11 创建订单量分日趋势')
plt.xlabel('日期')
plt.ylabel('订单量') #将图表保存到本地 plt.savefig(r'D:Data-Scienceshareexcel-python 报表自动化4.2 - 4.11 创建订单量
分日趋势.png')
将保存到本地的图表插入 Excel 中,具体实现代码如下。
from openpyxl import Workbook from openpyxl.drawing.image import Image
wb = Workbook()
ws = wb.active
img = Image(r'D:Data-Scienceshareexcel-python 报表自动化4.2 - 4.11 创建订单量
分日趋势.png')
ws.add_image(img, 'A1')
wb.save(r'D:Data-Scienceshareexcel-python 报表自动化4.2 - 4.11 创建订单量分日
趋势.xlsx')
运行上面代码会得到如图 7 所示结果,可以看到图表已经被成功插入 Excel 中。
(图7)
上面我们是把每一部分都单独拆开来实现的,最后存储在了不同的 Excel 文件中。
当然,有时放在不同文件中会比较麻烦,就需要把这些结果合并在同一个 Excel 的相同 Sheet 或者不同 Sheet 中。
将不同的结果合并到同一个 Sheet 中
将不同的结果合并到同一个 Sheet 中的难点在于不同表结果的结构不一样,而且需要在不同结果之间进行留白。
首先,插入核心指标表 df_review,插入方式与单独插入是一样的,具体代码如下。
for r in dataframe_to_rows(df_view,index = True,header = True): ws.append(r)
然后,插入各省份情况表 df_province,因为 append()方法默认是从第 1 行开始插入的,而我们前面几行已经有 df_view 表的数据了,所以就不能用 append()方法插入,而只能通过遍历每一个单元格的方式。
那我们怎么知道要遍历哪些单元格呢?核心是需要知道遍历开始的行/列和遍历结束的行/列。
遍历开始的行 = df_view 表占据的行 + 留白的行(一般表与表之间留 2 行) + 1
遍历结束的行 = 遍历开始的行 + df_province 表占据的行
遍历开始的列 = 1
遍历结束的列 = df_province 表占据的列
又因为 DataFrame 中获取列名的方式和获取具体值的方式不太一样,所以我们需要分别插入,先插入列名,具体代码如下。
for j in range(df_province.shape[1]):
ws.cell(row = df_view.shape[0] + 5,column = 1 + j).value = df_province.columns[r]
df_province.shape[1]表示获取 df_province 表有多少列,df_view.shape[0]表示获取
df_view 表有多少行。
前面说过,遍历开始的行是表占据的行加上留白的行再加 1,一般留白的行是 2,
可是这里为什么是 df_view.shape[0] + 5 呢?因为 df_view.shape[0]是不包括列名行的,而且在插入 Excel 中时会默认增加 1 行空行,所以需要在留白行的基础上再增加 2 行,
即 2 + 2 + 1 = 5。
因为 range()函数默认是从 0 开始的,而 Excel 中的列是从 1 开始的,所以 column需要加 1。
上面的代码只是把 df_province 表的列名插入进来,接下来插入具体的值,方式与插入列名的方式一致,只不过需要在列名的下一行开始插入,具体代码如下。
for i in range(df_province.shape[0]): for j in range(df_province.shape[1]):
ws.cell(row = df_view.shape[0] + 6 + i,column = 1 + j).value =
df_province.iloc[i,j]
接下来,插入图片,插入图片的方式与前面的单独插入方法是一致的,具体代码如下。
#插入图片 img = Image(r'D:Data-Scienceshareexcel-python 报表自动化4.2 - 4.11 创建订单量
分日趋势.png')
ws.add_image(img, 'G1')
将所有的数据插入以后就该对这些数据进行格式设置了,因为不同表的结构不一样,所以我们没法直接批量对所有单元格进行格式设置,只能按范围分别进行设置,而不同范围的格式可能是一样的,所以我们先预设一些格式变量,这样后面用到的时候直接调取这些变量即可,减少代码冗余,具体代码如下。
#格式预设 #表头字体设置 title_Font_style = Font(name = '微软雅黑',size = 12,bold = True,color = "FFFFFFFF") #普通内容字体设置 plain_Font_style = Font(name = '微软雅黑',size = 12) Alignment_style = Alignment(horizontal = "center") Border_style = Border(left = Side(border_style = "thin",color = "FF000000"), right = Side(border_style = "thin",color = "FF000000"), top = Side(border_style = "thin",color = "FF000000"), bottom = Side(border_style = "thin",color = "FF000000")) PatternFill_style = PatternFill(fill_type = 'solid',start_color ='FFFF6100')
格式预设完之后就可以对各个范围分别进行格式设置了,具体代码如下。
#对 A1 至 F6 范围内的单元格进行设置 for row in ws['A1':'F6']: for c in row:
c.font = plain_Font_style
c.alignment = Alignment_style
c.border = Border_style #对第 1 行和第 2 行的单元格进行设置 for row in ws[1:2]: for c in row:
c.font = title_Font_style
c.fill = PatternFill_style #对 E 列和 F 列的单元格进行设置 for col in ws["E":"F"]: for r in col:
r.number_format = '0.00%' #对 A9 至 B19 范围内的单元格进行设置 for row in ws['A9':'B19']: for c in row:
c.font = plain_Font_style
c.alignment = Alignment_style
c.border = Border_style #对 A9 至 B9 范围内的单元格进行设置 for row in ws['A9':'B9']: for c in row:
c.font = title_Font_style
c.fill = PatternFill_style #设置进度条 rule = DataBarRule(start_type = 'min',end_type = 'max',
color="FF638EC6", showValue=True, minLength=None,
maxLength=None)
ws.conditional_formatting.add('B10:B19',rule) #调整列宽 ws.column_dimensions['A'].width = 17 ws.column_dimensions['B'].width = 13 ws.column_dimensions['E'].width = 10
最后,将上面所有代码片段合并在一起,就是将不同的结果文件合并到同一个Sheet 中的完整代码,具体如下。
Sheet 中的完整代码,具体如下。 from openpyxl import Workbook from openpyxl.utils.dataframe import dataframe_to_rows from openpyxl.styles import colors from openpyxl.styles import Font from openpyxl.styles import PatternFill from openpyxl.styles import Border, Side from openpyxl.styles import Alignment from openpyxl.formatting.rule import DataBarRule
wb = Workbook()
ws = wb.active #先将核心指标 df_view 表插入进去 for r in dataframe_to_rows(df_view,index = True,header = True):
ws.append(r) #再将各省份情况 df_province 表插入进去 #先将表头插入 for j in range(df_province.shape[1]):
ws.cell(row = df_view.shape[0] + 5,column = 1 + j).value = df_province.columns[r] #再把具体的值插入 #先遍历行 for i in range(df_province.shape[0]): #再遍历列 for j in range(df_province.shape[1]):
ws.cell(row = df_view.shape[0] + 6 + i,column = 1 + j).value = df_province.
iloc[i,j] #插入图片 img = Image(r'D:Data-Scienceshareexcel-python 报表自动化4.2 - 4.11 创建订单量
分日趋势.png')
ws.add_image(img, 'G1') ##---格式调整--- ws.delete_rows(2)
ws['A1'] = '指标' ws.insert_rows(1)
ws['A1'] = '电商业务方向 2021/4/11 日报' ws.merge_cells('A1:F1') #合并单元格 #格式预设 #表头字体设置 title_Font_style = Font(name = '微软雅黑',size = 12,bold = True,color = "FFFFFFFF") #普通内容字体设置 plain_Font_style = Font(name = '微软雅黑',size = 12)
Alignment_style = Alignment(horizontal = "center")
Border_style = Border(left = Side(border_style = "thin",color = "FF000000"),
right = Side(border_style = "thin",color = "FF000000"),
top = Side(border_style = "thin",color = "FF000000"),
bottom = Side(border_style = "thin",color = "FF000000"))
PatternFill_style = PatternFill(fill_type = 'solid',start_color='FFFF6100') #对 A1 至 F6 范围内的单元格进行设置 for row in ws['A1':'F6']: for c in row:
c.font = plain_Font_style
c.alignment = Alignment_style
c.border = Border_style #对第 1 行和第 2 行的单元格进行设置 for row in ws[1:2]: for c in row:
c.font = title_Font_style
c.fill = PatternFill_style #对 E 列和 F 列的单元格进行设置 for col in ws["E":"F"]: for r in col:
r.number_format = '0.00%' #对 A9 至 B19 范围内的单元格进行设置 for row in ws['A9':'B19']: for c in row:
c.font = plain_Font_style
c.alignment = Alignment_style
c.border = Border_style #对 A9 至 B9 范围内的单元格进行设置 for row in ws['A9':'B9']: for c in row:
c.font = title_Font_style
c.fill = PatternFill_style #设置进度条 rule = DataBarRule(start_type = 'min',end_type = 'max',
color="FF638EC6", showValue=True, minLength=None, maxLength= None)
ws.conditional_formatting.add('B10:B19',rule) #调整列宽 ws.column_dimensions['A'].width = 17 ws.column_dimensions['B'].width = 13 ws.column_dimensions['E'].width = 10 #将结果文件进行保存 wb.save(r'D:Data-Scienceshareexcel-python 报表自动化多结果合并.xlsx')
运行上面代码,会得到如图 8 所示结果,可以看到不同结果文件合并在了一起,并且各自的格式设置完好。
(图8)
将不同的结果合并到同一工作簿的不同 Sheet 中
将不同的结果合并到同一工作簿的不同 Sheet 中比较好实现,只需要新建几个Sheet,然后对不同的 Sheet 插入数据即可,具体实现代码如下。
from openpyxl import Workbook from openpyxl.utils.dataframe import dataframe_to_rows
wb = Workbook()
ws = wb.active
ws1 = wb.create_sheet()
ws2 = wb.create_sheet() #更改 sheet 的名称 ws.title = "核心指标" ws1.title = "各省份销情况" ws2.title = "分日趋势" for r1 in dataframe_to_rows(df_view,index = True,header = True):
ws.append(r1) for r2 in dataframe_to_rows(df_province,index = False,header = True):
ws1.append(r2)
img = Image(r'D:Data-Scienceshareexcel-python 报表自动化4.2 - 4.11 创建订单量
分日趋势.png')
ws2.add_image(img, 'A1')
wb.save(r'D:Data-Scienceshareexcel-python 报表自动化多结果合并_多 Sheet.xlsx')
运行上面代码,会得到如图 9 所示结果,可以看到创建了 3 个 Sheet,且不同的内容被保存到了不同 Sheet 中。
(图9)
本文节选自《对比Excel,轻松学习Python报表自动化》一书,更多关于使用Python进行报表自动化的内容,欢迎阅读本书!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29