从数据概念兴起至今,毫无疑问数据已成为全世界最重要的资源。著名咨询公司麦肯锡曾对全球多家知名且快速增长的企业进行分析,发现这些公司的一个重要共同点就是数据能力很强,且能够充分发挥数据的价值,赋能企业增长。那么数据的价值究竟是什么?
数据的价值对公司来说是核心,对人来说也是极其重要的,具体从两个方面来看:
数据对于职场人员来说,就像是在海洋中迷失方向的指南针一样,能够精准的为后续工作指明方向。但是对于没有接触过数据的新人,别说应用数据,他们甚至不具备数据思维。
只有我们具备了明确的数据思维,掌握了数据获取和分析数据的方法论,才能解决工作中的问题。
01、到底何为【数据思维】?
数据分析技能大同小异,而思维决定高度。数据分析包括数据运营,为了推动业务增长或其他分析目的需要去发现挖掘更多与结果相关的数据维度。所以数据分析不只是数据处理分析过程,还有前面未知的探索。
简单来说,所谓的数据思维终极目标是让数据呈现出画面感,而不是一堆堆冰冷的数据指标。
假设我们现在需要投放广告,广告投放的目的无非就是吸引更多的用户,最终实现营销转化,但同时也要注意其他的信息。比如:
广告效果指标分很多,每一种监测指标反映不同的数据效果。比如:到达率反应广告效果有没有达到广告公司的承诺;广告受众、地域分布反应投放的区域受众人群是否正确等。
同时投放的维度不同监测的指标也不同。比如以推广品牌为目的重点关注曝光量 ;以引入流量为目的重点关注到达量、关注量;以引导用户参与活动为目的重点关注转化量。
如果你做活动或者广告投放,但是缺乏数据思维的话,可能最后的效果会很差。如果你懂得去深思数据背后的故事,那么数据所呈现出来的画面感会让你重新认识数据,从而去运用数据,做出准确的判断。
由此可见,拥有清晰的数据思维才能够深挖问题的本质,而不是我们只看到的表象。我们想要培养数据思维,需要具备以下几点:
02、业务视角下的数据思维?
业务分析的流程一般是这样的:
1、吃透业务分析需求
所谓吃透分析需求,就是对业务的需求进行深入理解,一方面是看需求是否合理,另一方面是对需求的全面思考。
先想清楚,业务的需求真的需要解决吗?真的重要吗?真的能实现吗?真的有价值吗?要对业务提出的需求进行深度挖掘,直到这个需求真的对其有价值。
其次,业务的需求往往是某个具体问题,零散而片面,所以我们要进行系统化的、全面的需求分析,从全局的角度引导业务分析需求。
2、建立分析体系
确定分析指标:首先是指标先行,梳理出你需要的指标,建立起指标库,原则是要确定核心指标、剔除虚荣指标、尽可能简化指标;
生成需求指标:很多指标可能并不是直接就有的,比如重度访问用户的占比,就需要组合访问时长和UV这两个指标,形成一个新指标。
建立分析框架:原则是要从指标的角度出发、从业务的角度出发、从流程的角度出发。
3、了解业务逻辑
把分析体系搭建起来后,与业务部门一碰撞,发现还是不能完全满足需求。这种问题,本质上业务逻辑却是,由三部分构成:
当明确了分析什么样的指标、满足业务什么样的需求后,我们就要考虑整个业务的模式和逻辑,要关注用户角色、运营角色、信息、渠道等,以及他们之间的流转关系,以求用最高效的方式满足户需求。
4、分析结论和成果要有明确的业务指向
业务人员看你的分析结论,是要能够马上采取对应行动的,这才是数据分析的根本目的。因此你的分析结论切勿罗列数据结果,一定要有明确的指向性。
就拿报表需求来说,你的报表分析没有任何的逻辑,没有回答业务的疑问,没有加入业务的思考,就完全是一张废纸而已,业务想要的其实只有一句话:“我该怎么办?”
所以,做数据分析,要从具体问题出发,到一个指向业务的行动结束。想要超出业务期望,当然得了解具体业务期望是什么,解答他们的问题,帮他们发现更深层的问题。
(本段内容转载自知乎:李启方)
对于没有业务思维指导的数据分析只能是一张废纸,这一点对于刚刚入门数据分析的新手来说,尤其要注重积累和培养。
由CDA名师联手打造的直播课程《业务前台人员数据思维训练营》,可以解决你在业务方面遇到的数据问题,现在扫码预约,免费获取直播地址!
数字化时代,
你做产品营销还靠拍脑袋吗?
从业年多年,
你对自己职场前路还很迷茫吗?
带你突破瓶颈
找到职场晋升财富密码
直播课解决你以下业务问题
市场调研不足盲目上新品,屡战屡败
用户画像没摸清,广告通投连本都收不回
产品迭代跟不上,老用户复购模式跑不通
运营流程太混乱,销售转化不理想
风控机制没建立,被虚假交易薅光了羊毛
直播课解决你以下职场困扰
前路迷茫,找不到适合自己的职场定位
想要跃层就业,不知道如何成为市场需求的人才
干活凭经验,现有技能满足不了企业需要
有学习需求,但课程太杂不知道怎么建设学习路径
上课时间不固定,学习效果难以保障
学完课程你将得到
从用户思维做营销增量,用数据思维助个人成长
借助数据思维从商业顶层俯视业务生命周期
透视各岗位如何挖掘数据价值提升业务效率
运用数据框架梳理公司整体业务模型
课程亮点一
成长路径梳理,帮你职场晋升有目标
课程亮点二
1.认知客户价值:学习市场调研实用方法,收集精准目标客户需求
2.创造客户价值:从商业模式论证出发,学习产品精益画布、用户旅程制作与分析
3.传播客户价值:了解市场、运营高需技能-用户画像、精准营销、转化路径、私域运营
4.交付客户价值:明确客户全生命周期价值,建立靠谱运营指标体系,识别异常及虚假交易
直播课程
《业务前台人员数据思维训练营》
现在扫码预约
免费获取直播地址!
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20