如果有人问:2021年最有前途的职业是什么?数据分析师一定名列前茅!
在大数据时代的今天,数据分析作为一个热门行业,曾被Times时代杂志誉为“21世纪最热门五大新兴”行业之一。据统计,目前在世界五百强的企业中,有百分之九十的企业都建立了数据分析部门,未来中国对数据分析师的需求更是呈现上升趋势。
在这种趋势之下,数据分析已经不单单是数据分析师的“专业本领,”意味着成为我们每一个职场人士都需要掌握的技能。
对于职场已入瓶颈,或者想谋求更好发展的互联网人而言,转行数据分析正是一个不可多得的机遇。
在转行数据分析之前,小编先从从业者的角度带着大家梳理一下数据分析,方便大家根据自己的实际情况做出选择。
01、人人都可以转行数据分析吗?
首先我可以明确地告诉大家,零基础转行数据分析是可行的。
但过程并非是一帆风顺的,需要经过很多努力。但是如果你不愿意吃学习的苦;怀着三天打鱼,两天晒网的心态;那么我建议你趁早放弃。
自从大数据的概念兴起后,数据分析师随之而来,很多职场人士都想在这个香饽饽上咬一口,但是你真的了解过这个行业吗?
数据分析作为新兴行业,根据岗位职责总体可以概括为以下两个方向:
我们先来聊聊业务岗位的数据分析师,此方向更加看重逻辑思维,比如你思考框架的完整性、思维的灵活性,对数据要有敏锐的嗅觉。除此之外,你还需要掌握一些行之有效的数据分析方法,并且能够灵活的与自身工作相结合。比如:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等等。
另一个则是技术方向的数据分析师,此方向更看重数据技术,比如统计学基础、数据库操作(SQL等)、编程语言(Python、R等)、机器学习等等。你需要对业务有很深的理解,这样才能对业务数据进行清洗、建模、分析。此方向的数据分析师薪资虽然高,但难度也是也极大的,对于刚刚入门数据分析的朋友,我更加推荐业务岗位的数据分析师。
如果你真的对数据分析感兴趣,就要付出行动,而不是把它停留在脑海里。前段时间刷微博看到了一段很有意思的话,分享给大家。
15岁觉得游泳难,放弃游泳,
18岁遇到一个你喜欢的人约你去游泳,你只好说“我不会”。
18岁觉得英文难,放弃英文,28岁出现一个很棒但要会英文的工作,你只好说“我不会”。
人生前期越嫌麻烦,越懒得学,后来就越可能错过让你动心的人和事,错过新风景。
02、数据分析师的日常工作有哪些?
在聊完数据分析的岗位职责划分之后,我想再和大家聊聊数据分析日常需要做哪些工作?
1.日常数据监控
数据分析师必须会监控数据和收集数据,利用数据得出有效的结论,并提供更好的决策方案。数据获取主要有两种方式:内部数据和外部获取。内部数据又分为两种方式,一种是通过公司的数据库和数据表直接获取;
另一种则是收集数据,你必须要通过整理公司的大量文件,从中收集到你所需要的数据。而外部获取则主要是检索,通过搜索引擎、行业报告还有技术爬取等手段获取到数据。
2.评估业务指标
最近搞的一个运营活动效果好不好?
我们该如何衡量这个标准呢?如果是微信的运营者,他会通过自己的用户量、阅读量,来作为这个平台的参数指标。
这部分内容在开始之前就需要数据分析师来全盘考虑,依据日常运营指标,来制定全盘的运营计划。并根据方案来布置需要监控/收集数据的位置,这是一个系统的工程。
3.业务优化
没有一款产品是完美的,只要被生产出来,就一定有它可以提升的空间。
当我们拿到一款产品,并找到它的发展目标。那么,我们就可以根据产品的生命周期,不断地监控、发现、优化产品的不足。
4.业务决策
当我们在帮助一款产品做决策时,很多小伙伴第一反应就是A/B测试。的确,这是很重要的一方面,但绝不是全部。
在决策过程中,我们更要注重根据产品需要解决的问题,从而去设立对应问题的优先级。哪些是应该优先处理的?哪些特性的改变,可以快速改善产品?
这个时候就需要我们数据分析师发挥作用了,协助产品做测试,从而判断问题的优先级。通过4个紧急、重要象限,来帮助产品做决策。
5.长远战略
现在的年轻人都喜欢什么啊?
这类问题往往不是那么迫切,但是为了公司的长远发展和自身影响力等,还是会接触到的。这里最关键的问题是如何从中挖掘出最有价值、最符合公司长远发展的问题,从而制定出符合公司个性化的产品。
成长就是在不断认识自我的状态下发展,希望这些东西可以帮助到正在迷茫中的朋友。总体而言,数据分析适合大多数人来学习,但是也需要付出一些努力。
03、关于学习资料
在写这篇文章之前,经过几个月的努力,我整理了一套数据分析技能视频,现在免费提供给大家学习,希望能够帮助职场人提升自己的技能,也希望能够帮助到想转行的小白,对于数据分析有个更深的认知。
扫码领取学习资料
祝你早日拿到心意offer!
数据分析学习资料
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20