作者:豆豆
来源:Python 技术
众所周知,Pytnon 非常擅长处理数据,尤其是后期数据的清洗工作。今天派森酱就给大家介绍一款处理数据的神器 Pipe。
简言之,Pipe 是 Python 的一个三方库。
通过 Pipe 我们可以将一个函数的处理结果传递给另外一个函数,这意味着你的代码会非常简洁。
要使用 Pipe 需要提前安装,直接使用 pip 安装即可。
pip install pipe
和 filter 类似,pipe 中的 where 操作可以过滤可迭代对象中的元素。
In [5]: numbers = [0, 1, 2, 3, 4, 5] In [6]: list(numbers | where(lambda x: x % 2 == 0)) Out[6]: [0, 2, 4]
类似 map,select 操作可以将函数作用于可迭代对象中的每个元素。下面的例子中我们将列表中的元素都扩大 2 倍。
In [8]: list(numbers | select(lambda x: x * 2)) Out[8]: [0, 2, 4, 6, 8, 10]
当然,还可以将多种操作合并在一起来玩。
下面的例子就是将列表中的偶数挑选出来并扩大 2 倍,和 filter 与 map 不同的是,pipe 可以将多个操作连接起来,就像水管套水管一样,所以我想管道这个名字也是很接地气了。
In [10]: list(numbers ...: | where(lambda x: x % 2 == 0) ...: | select(lambda x: x * 2) ...: ) ...: Out[10]: [0, 4, 8]
操作嵌套列表时非常痛苦,值得高兴的是 pipe 给出了很友好的接口,只需要 chain 一下即可。
In [11]: list([[1, 2], [3, 4], [5]] | chain) Out[11]: [1, 2, 3, 4, 5] In [30]: list((1, 2, 3) | chain_with([4, 5], [6])) Out[30]: [1, 2, 3, 4, 5, 6] In [31]: list((1, 2, 3) | chain_with([4, 5], [6,[7]])) Out[31]: [1, 2, 3, 4, 5, 6, [7]]
如你所见,chain 只可以拆开一层,如果要拆开多层嵌套的话,不要慌,traverse 轻松搞定。
In [12]: list([[1, 2], [[[3], [[4]]], [5]]] | traverse) Out[12]: [1, 2, 3, 4, 5]
结合 select 一起,获取字典中的某个字段属性集合。
In [32]: fruits = [
...: {"name": "apple", "price": [2, 5]},
...: {"name": "orange", "price": 4},
...: {"name": "grape", "price": 5},
...: ]
In [33]: list(fruits
...: | select(lambda fruit: fruit["price"])
...: | traverse)
...:
Out[33]: [2, 5, 4, 5]
对列表中的元素进行分组是必不可少的,在 pipe 中可以使用 groupby 来完成。
In [26]: list(numbers ...: | groupby(lambda x: 'Even' if x % 2 == 0 else 'Odd') ...: | select(lambda x: {x[0]: list(x[1])}) ...: ) ...: Out[26]: [{'Even': [0, 2, 4]}, {'Odd': [1, 3, 5]}]
同样,还可以在 select 中添加 where 过滤条件。
In [27]: list(numbers
...: | groupby(lambda x: 'Even' if x % 2 == 0 else 'Odd')
...: | select(lambda x: {x[0]: list(x[1] | where(lambda x: x > 2))})
...: )
...:
Out[27]: [{'Even': [4]}, {'Odd': [3, 5]}]
数据处理中时常会用到行列互相转换,尤其是在用 DataFrame 时,使用 pipe 一行代码搞定行列转换。
In [24]: [[1, 2, 3], [4, 5, 6], [7, 8, 9]] | transpose Out[24]: [(1, 4, 7), (2, 5, 8), (3, 6, 9)]
对列表去重也是一项常用的操作,在 pipe 中使用 dedup 来对列表进行去重。
In [28]: list([1, 1, 2, 2, 3, 3, 1, 2, 3] | dedup) Out[28]: [1, 2, 3]
与 dedup 不同的是,uniq 只会对连续的重复元素保留一个,非连续重复元素则不过滤。
In [29]: list([1, 1, 2, 2, 3, 3, 1, 2, 3] | uniq) Out[29]: [1, 2, 3, 1, 2, 3]
今天派森酱给大家介绍了一个处理数据的神器,使用管道可以让繁琐的操作浓缩在几行甚至一行代码搞定,提高可读性的同时还提升了代码的整洁程度,美滋滋~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13