
作者:豆豆
来源:Python 技术
众所周知,Pytnon 非常擅长处理数据,尤其是后期数据的清洗工作。今天派森酱就给大家介绍一款处理数据的神器 Pipe。
简言之,Pipe 是 Python 的一个三方库。
通过 Pipe 我们可以将一个函数的处理结果传递给另外一个函数,这意味着你的代码会非常简洁。
要使用 Pipe 需要提前安装,直接使用 pip 安装即可。
pip install pipe
和 filter 类似,pipe 中的 where 操作可以过滤可迭代对象中的元素。
In [5]: numbers = [0, 1, 2, 3, 4, 5] In [6]: list(numbers | where(lambda x: x % 2 == 0)) Out[6]: [0, 2, 4]
类似 map,select 操作可以将函数作用于可迭代对象中的每个元素。下面的例子中我们将列表中的元素都扩大 2 倍。
In [8]: list(numbers | select(lambda x: x * 2)) Out[8]: [0, 2, 4, 6, 8, 10]
当然,还可以将多种操作合并在一起来玩。
下面的例子就是将列表中的偶数挑选出来并扩大 2 倍,和 filter 与 map 不同的是,pipe 可以将多个操作连接起来,就像水管套水管一样,所以我想管道这个名字也是很接地气了。
In [10]: list(numbers ...: | where(lambda x: x % 2 == 0) ...: | select(lambda x: x * 2) ...: ) ...: Out[10]: [0, 4, 8]
操作嵌套列表时非常痛苦,值得高兴的是 pipe 给出了很友好的接口,只需要 chain 一下即可。
In [11]: list([[1, 2], [3, 4], [5]] | chain) Out[11]: [1, 2, 3, 4, 5] In [30]: list((1, 2, 3) | chain_with([4, 5], [6])) Out[30]: [1, 2, 3, 4, 5, 6] In [31]: list((1, 2, 3) | chain_with([4, 5], [6,[7]])) Out[31]: [1, 2, 3, 4, 5, 6, [7]]
如你所见,chain 只可以拆开一层,如果要拆开多层嵌套的话,不要慌,traverse 轻松搞定。
In [12]: list([[1, 2], [[[3], [[4]]], [5]]] | traverse) Out[12]: [1, 2, 3, 4, 5]
结合 select 一起,获取字典中的某个字段属性集合。
In [32]: fruits = [
...: {"name": "apple", "price": [2, 5]},
...: {"name": "orange", "price": 4},
...: {"name": "grape", "price": 5},
...: ]
In [33]: list(fruits
...: | select(lambda fruit: fruit["price"])
...: | traverse)
...:
Out[33]: [2, 5, 4, 5]
对列表中的元素进行分组是必不可少的,在 pipe 中可以使用 groupby 来完成。
In [26]: list(numbers ...: | groupby(lambda x: 'Even' if x % 2 == 0 else 'Odd') ...: | select(lambda x: {x[0]: list(x[1])}) ...: ) ...: Out[26]: [{'Even': [0, 2, 4]}, {'Odd': [1, 3, 5]}]
同样,还可以在 select 中添加 where 过滤条件。
In [27]: list(numbers
...: | groupby(lambda x: 'Even' if x % 2 == 0 else 'Odd')
...: | select(lambda x: {x[0]: list(x[1] | where(lambda x: x > 2))})
...: )
...:
Out[27]: [{'Even': [4]}, {'Odd': [3, 5]}]
数据处理中时常会用到行列互相转换,尤其是在用 DataFrame 时,使用 pipe 一行代码搞定行列转换。
In [24]: [[1, 2, 3], [4, 5, 6], [7, 8, 9]] | transpose Out[24]: [(1, 4, 7), (2, 5, 8), (3, 6, 9)]
对列表去重也是一项常用的操作,在 pipe 中使用 dedup 来对列表进行去重。
In [28]: list([1, 1, 2, 2, 3, 3, 1, 2, 3] | dedup) Out[28]: [1, 2, 3]
与 dedup 不同的是,uniq 只会对连续的重复元素保留一个,非连续重复元素则不过滤。
In [29]: list([1, 1, 2, 2, 3, 3, 1, 2, 3] | uniq) Out[29]: [1, 2, 3, 1, 2, 3]
今天派森酱给大家介绍了一个处理数据的神器,使用管道可以让繁琐的操作浓缩在几行甚至一行代码搞定,提高可读性的同时还提升了代码的整洁程度,美滋滋~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26